[1] 国家统计局. 2021中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
[2] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18.
[3] 李文勇, 李明, 陈梅香,等. 基于机器视觉的作物多姿态害虫特征提取与分类方法[J]. 农业工程学报, 2014, 30(14): 154-162.
Li Wenyong, Li Ming, Chen Meixiang, et al. Feature extraction and classification method of multipose pests using machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 154-162.
[4] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247.
Wang Meihua, Wu Zhenxin, Zhou Zuguang. Finegrained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(4): 239-247.
[5] 张永玲, 姜梦洲, 俞佩仕, 等. 基于多特征融合和稀疏表示的农业害虫图像识别方法[J]. 中国农业科学, 2018, 51(11): 2084-2093.Zhang Yongling, Jiang Mengzhou, Yu Peishi, et al. Agricultural pest identification based on multifeature fusion and sparse representation [J]. Scientia Agricultura Sinica, 2018, 51(11): 2084-2093.
[6] 肖志云, 刘洪. 小波域马铃薯典型虫害图像特征选择与识别[J]. 农业机械学报, 2017, 48(9): 24-31.
Xiao Zhiyun, Liu Hong. Features selection and recognition of potato typical insect pest images in wavelet domain [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 24-31.
[7] 邹修国, 丁为民, 刘德营,等. 基于4种不变矩和BP神经网络的稻飞虱分类[J]. 农业工程学报, 2013, 29(18): 171-178.
Zou Xiuguo, Ding Weimin, Liu Deying,et al. Classification of rice planthopper based on invariant moments and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 171-178.
[8] 陈娟, 陈良勇, 王生生,等. 基于改进残差网络的园林害虫图像识别[J]. 农业机械学报, 2019, 50(5): 187-195.
Chen Juan, Chen Liangyong, Wang Shengsheng,et al. Pest image recognition of garden based on improved residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 187-195.
[9] Deng L, Wang Y, Han Z, et al. Research on insect pest image detection and recognition based on bioinspired methods [J]. Biosystems Engineering, 2018, 169: 139-148.
[10] 孔建磊, 金学波, 陶治,等. 基于多流高斯概率融合网络的病虫害细粒度识别[J]. 农业工程学报, 2020, 36(13): 148-157.
Kong Jianlei, Jin Xuebo, Tao Zhi,et al. Finegrained recognition of diseases and pests based on multistream Gaussian probability fusion network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 148-157.
[11] Wei D, Chen J, Luo T, et al.Classification of crop pests based on multiscale feature fusion [J]. Computers and Electronics in Agriculture, 2022, 194: 106736.
[12] Khanramaki M, AsliArdeh E A, Kozegar E. Citrus pests classification using an ensemble of deep learning models [J]. Computers and Electronics in Agriculture, 2021, 186: 106192.
[13] Yang Z, Yang X, Li M, et al. Automated gardeninsect recognition using improved lightweight convolution network [J]. Information Processing in Agriculture, 2021.
[14] 李江昀, 赵义凯, 薛卓尔,等. 深度神经网络模型压缩综述[J]. 工程科学学报, 2019, 41(10): 1229-1239.〖JP2〗Li Jiangyun, Zhao Yikai, Xue Zhuoer, et al. A survey of model compression for deep neural networks [J]. Chinese Journal of Engineering, 2019, 41(10): 1229-1239.
[15] Thenmozhi K, Reddy U S. Crop pest classification based on deep convolutional neural network and transfer learning [J]. Computers and Electronics in Agriculture, 2019, 164: 104906.
[16] Liu Y, Liu S, Xu J, et al. Forest pest identification based on a new dataset and convolutional neural network model with enhancement strategy [J]. Computers and Electronics in Agriculture, 2022, 192: 106625.
[17] Kim Y, Koh Y J, Lee C, et al. Dark image enhancement based on pairwise target contrast and multiscale detail boosting [C]. International Conference on Image Processing (ICIP). IEEE, 2015: 1404-1408.
[18] Ma N, Zhang X, Zheng H T, et al. ShuffleNetV2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision, 2018: 116-131.
[19] Chen Y, Dai X, Liu M, et al. Dynamic convolution: Attention over convolution kernels [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11030-11039.
[20] Zhang H, Zu K, Lu J, et al. EPSANet: An efficient pyramid squeeze attention block on convolutional neural network [J]. arXiv preprint arXiv:210514447, 2021.
[21] Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[22] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[23] Wang Q, Wu B, Zhu P, et al. ECANet: Efficient channel attention for deep convolutional neural networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[24] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[25] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[26] Selvaraju R R, Cogswell M, Das A, et al. GradCAM: Visual explanations from deep networks via gradientbased localization [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626.
|