[1] 付豪, 赵学观, 翟长远, 等. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207.
Fu Hao, Zhao Xueguan, Zhai Changyuan, et al. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207.
[2] 庄占兴, 孙文国, 范金勇, 等. 西草净对谷子田一年生杂草活性及其安全性测定[J]. 农药, 2017, 56(7): 531-534.Zhuang Zhanxing, Sun Wenguo, Fan Jinyong, et al. Weed control effect of simetryn and its safety to millet in glasshouses [J]. Agrochemicals, 2017, 56(7): 531-534.
[3] 赵玉信, 杨惠敏. 作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制[J]. 草业学报, 2015, 24(8): 199-210.
Zhao Yuxin, Yang Huimin. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms [J]. Acta Prataculturae Sinica, 2015, 24(8): 199-210.
[4] 姜延军, 岳德成, 李青梅, 等. 全膜双垄沟播玉米田选用除草地膜的适宜田间杂草密度研究[J]. 植物保护, 2018, 44(1): 110-115.Jiang Yanjun, Yue Decheng, Li Qingmei, et al. Effects of covering weeding film on the suitable weed density in doubleridge maize fields with whole plasticfilm mulching [J]. Plant Protection, 2018, 44(1): 110-115.
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[7] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [C]. European Conference on Computer Vision, 2016: 21-37.
[8] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv:180402767, 2018.
[9] 刘莫尘, 高甜甜, 马宗旭, 等. 基于MSRCR-YOLOv4-tiny的田间玉米杂草检测模型[J]. 农业机械学报, 2022, 53(2): 246-255, 335.
Liu Mochen, Gao Tiantian, Ma Zongxu, et al. Target detection model of corn weeds in field environment based on MSRCR algorithm and YOLOv4-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 246-255, 335.
[10] 王宇博, 马廷淮, 陈光明. 基于改进YOLOv5算法的农田杂草检测[J]. 中国农机化学报, 2023, 44(4): 167-173.
Wang Yubo, Ma Tinghuai, Chen Guangming. Weeds detection in farmland based on a modified YOLOv5 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 167-173.
[11] 张伟康, 孙浩, 陈鑫凯, 等. 基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究[J]. 图学学报, 2023, 44(2): 346-356.〖JP2〗Zhang Weikang, Sun Hao, Chen Xinkai, et al. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356.
[12] Chen Jiqing, Wang Huabin, Zhang Hongdu, et al. Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion [J]. Computers and Electronics in Agriculture, 2022, 202.
[13] Fan Qihang, Huang Huaibo, Guan Jiyang, et al. Rethinking local perception in lightweight vision transformer [J]. arXiv:230317803, 2023.
[14] Liu Yichao, Shao Zongru, Nico Hoffmann. Global attention mechanism: Retain information to enhance channelspatial interactions [J]. arXiv:211205561, 2021.
[15] Park J, Woo S, Lee J Y, et al. BAM: Bottleneck attention module [J]. arXiv:180706514, 2018.
[16] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[17] Jie Hu, Li Shen, Samuel Albanie, et al. Squeeze and excitation networks [J]. arXiv:170901507,2019.
[18] Ouyang Daliang, He Su, Zhang Guozhong, et al. Efficient multiscale attention module with crossspatial learning [J]. arXiv: 230513563, 2023.
[19] Li Yehao, Yao Ting, Pan Yingwei, et al. Contextual transformer networks for visual recognition [J]. arXiv: 210712292, 2021.
[20] 杨断利, 王永胜, 陈辉, 等. 基于改进YOLO v6-tiny的蛋鸡啄羽行为识别与个体分类[J]. 农业机械学报, 2023, 54(5): 268-277.
Yang Duanli, Wang Yongsheng, Chen Hui, et al. Feather pecking abnormal behavior identification and individual classification method of laying hens based on improved YOLO v6-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 268-277.
|