[1] Pan S Y, Nie Q, Tai H C, et al. Tea and tea drinking: Chinas outstanding contributions to the mankind [J]. Chinese Medicine, 2022, 17(1): 1-40.
[2] Han Y, Xiao H, Qin G, et al. Developing situations of tea plucking machine [J]. Engineering, 2014, 6(6):45606.
[3] Xu W, Zhao L, Li J, et al. Detection and classification of tea buds based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 192: 106547.
[4] 孙红,李松,李民赞,等.农业信息成像感知与深度学习应用研究进展[J].农业机械学报, 2020,51(5):1-17.Sun Hong, Li Song, Li Minzan, et al. Research progress of image sensing and deep learning in agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 1-17.
[5] 王卓,王健,王枭雄,等.基于改进YOLOv4的自然环境苹果轻量级检测方法[J].农业机械学报, 2022,53(8):294-302.
Wang Zhuo, Wang Jian, Wang Xiaoxiong, et al. Lightweight realtime apple detection method based on improved YOLOv4 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302.
[6] 尚钰莹,张倩如,宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J].农业工程学报, 2022,38(9):222-229.
Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning using yolo v5s to apple flower detection in natural scenes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229.
[7] 赵德安,吴任迪,刘晓洋,等.基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J].农业工程学报, 2019,35(3):164-173.
Zhao Dean, Wu Rendi, Liu Xiaoyang, et al. Apple positioning based on yolo deep convolutional neural network for picking robot in complex background [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173.
[8] 刘小刚,范诚,李加念,等.基于卷积神经网络的草莓识别方法[J].农业机械学报, 2020,51(2):237-244.
Liu Xiaogang, Fan Cheng, Li Jianian, et al. Identification method of strawberry based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 237-244.
[9] Liu G, Nouaze J C, Touko Mbouembe P L, et al. YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3 [J]. Sensors, 2020, 20(7): 2145.
[10] 杨坚,钱振,张燕军,等.采用改进YOLOv4-tiny的复杂环境下番茄实时识别[J].农业工程学报, 2022,38(9):215-221.
Yang Jian, Qian Zhen, Zhang Yanjun, et al. Realtime recognition of tomatoes in complex environments based on improved YOLOv4-tiny [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(9):215-221.
[11] 黄家才, 唐安, 陈光明,等. 基于Compact-YOLOv4的茶叶嫩芽移动端识别方法[J]. 农业机械学报, 2023, 54(3):282-290.
Huang Jiacai, Tang An, Chen Guangming, et al. Mobile recognition solution of tea buds based on Compact-YOLOv4 algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3):282-290.
[12] 朱红春,李旭,孟炀,等.基于Faster R-CNN网络的茶叶嫩芽检测[J].农业机械学报, 2022,53(5):217-224.
Zhu Hongchun, Li Xu, Meng Yang, et al. Tea bud detection based on Faster R-CNN network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5):217-224.
[13] 陈国防,陈兆英,王玉亮,等.基于数据增强深度学习的苹果花检测方法研究[J].中国农机化学报,2022,43(5):148-155.
Chen Guofang, Chen Zhaoying, Wang Yuliang, et al. Research on detection method of apple flower based on dataenhanced deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 148-155.
[14] 卫雅娜,王志彬,乔晓军,等.基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J].中国农机化学报, 2022, 43(11): 172-181.
Wei Yana, Wang Zhibin, Qiao Xiaojun,et al. Lightweight rice disease identification method based on attention mechanism and efficientnet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181.
[15] 于雪莹,高继勇,王首程,等.基于生成对抗网络和混合注意力机制残差网络的苹果病害识别[J].中国农机化学报, 2022, 43(6): 166-174.
Yu Xueying, Gao Jiyong, Wang Shoucheng, et al. Apple disease recognition based on wasserstein generative adversarial networks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174.
[16] 王红君,季晓宇,赵辉,等.SENet优化的Deeplabv3+淡水鱼体语义分割[J].中国农机化学报,2021,42(2):158-163.
Wang Hongjun, Ji Xiaoyu, Zhao Hui, et al. SENet optimized Deeplabv3+ freshwater fish body semantic segmentation [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 158-163.
[17] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[18] 王建翠,惠巧娟,吴立国.基于多尺度注意力和深度可分离卷积的农田杂草检测[J].中国农机化学报, 2023, 44(5): 182-187.
Wang Jiancui, Hui Qiaojuan, Wu Liguo. Field weeds detection based on multi scale attention and depth separable convolution [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 182-187.
[19] Hao W, Zhili S. Improved mosaic: Algorithms for more complex images [C]. Journal of Physics: Conference Series. IOP Publishing, 2020, 1684(1): 012094.
[20] Zhou Q, Zhang W, Li R, et al. Improved YOLOv5-S object detection method for optical remote sensing images based on contextual transformer [J]. Journal of Electronic Imaging, 2022, 31(4): 043049.
[21] Li S, Cui X, Guo L, et al. Enhanced automatic root recognition and localization in GPR images through a YOLOv4-based deep learning approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[22] 尚文卿,齐红波.基于改进Faster R-CNN与迁移学习的农田杂草识别算法[J].中国农机化学报,2022,43(10):176-182.
Shang Wenqing, Qi Hongbo. Identification algorithm of field weeds based on improved Faster R-CNN and transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 176-182.
|