[ 1]刘庆庭,莫建霖,李廷化,等 .我国甘蔗种植机技术现状及存在的关键技术问题[ J].甘蔗糖业,2011(5): 52-58.
Liu Qingting, Mo Jianlin, Li Tinghua, et al. Current situation of sugarcane planter and its key technical issues in China[J]. Sugarcane and Canesugar,2011(5):52-58.
[ 2]陆尚平 .基于机器视觉的甘蔗茎节识别与蔗芽检测研究[D].武汉:华中农业大学, 2011.
Lu Shangping. Research on sugarcane internodes and sugarcane buds identification based on machine vision[D]. Wuhan:Huazhong Agricultural University,2011.
[ 3]石昌友,王美丽,刘欣然,等 .基于机器视觉的不同类型甘蔗茎节识别[ J].计算机应用, 2019,39(4):1208-1213.
Shi Changyou, Wang Meili, Liu Xinran, et al. Node recognition for different types of sugarcanes based on machine vision[J]. Journal of Computer Applications, 2019,39(4):1208-1213.
[ 4]陈延祥 .基于机器视觉的甘蔗多刀切种装备设计与研究[D].无锡:江南大学, 2022.
Chen Yanxiang. Design and research on sugarcane multi.cutter cutting equipment based on machine vision[D]. Wuxi:Jiangnan University,2022.
[ 5]李尚平,李向辉,张可,等 .改进 YOLOv3网络提高甘蔗茎节实时动态识别效率[ J].农业工程学报, 2019,35(23):185-191.
Li Shangping,Li Xianghui,Zhang Ke,et al. Increasing the real.time dynamic identification efficiency of sugarcane nodes by improved YOLOv3 network[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(23):185-191.
[ 6]黄亦其,尹凯,黄媚章,等 .基于 Bayes决策的甘蔗种芽完好性检测与试验[ J].农业工程学报,2016,32(5): 57-63.
Huang Yiqi,Yin Kai,Huang Meizhang,et al. Detection and experiment of sugarcane buds integrity based on Bayes decision[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(5):57-63.
[ 7]Song H,Peng J,Tuo N,et al. Study of sugarcane buds classification based on convolutional neural networks[J]. Intelligent Automation and Soft Computing,2021,27(2): 581-592.
[ 8]赵永强,饶元,董世鹏,等 .深度学习目标检测方法综述[J].中国图象图形学报, 2020,25(4):629-654.
Zhao Yongqiang,Rao Yuan,Dong Shipeng,et al. Survey on deep learning object detection[J]. Journal of Image and Graphics,2020,25(4):629-654.
[ 9]Bochkovskiy A,Wang C,Liao H. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition,2020.
[10]Redmon J, Farhadi A. YOLOv3: An incremental improvement[J]. arxiv e.prints,2018.
[11]Woo S,Park J,Lee J Y,et al. CBAM:Convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision,2018:3-19.
[12]刘强,李鹏,邹一鸣,等 .基于改进 YOLOv4算法的动车库接地杆状态检测[ J].五邑大学学报(自然科学版), 2022,36(2):41-47.
Liu Qiang,Li Peng,Zou Yiming,et al. State detection of grounding rods in moving garage based on improved YOLOv4 algorithm[J]. Journal of Wuyi University(Natural Science Edition),2022,36(2):41-47.
[13]Chao G. Discriminative K-means laplacian clustering[J]. Neural Processing Letters,2019,49(1):393-405.
[14]Back S, Lee S, Shin S, et al. Robust skin disease classification by distilling deep neural network ensemble for the mobile diagnosis of herpes zoster[J]. IEEE Access, 2021,9:20156-20169.
[15]梁桓伟 .基于 Android的近红外人眼检测与跟踪研究与实现[ D].大连:大连交通大学, 2018.
Liang Huanwei. Research and implementation of near infrared human eye detection and tracking based on Android[D]. Dalian:Dalian Jiaotong University,2018.
[16]赵东升 .基于 HLS的高效深度卷积神经网络 FPGA实现方法[ D].西安:西安电子科技大学, 2019.
Zhao Dongsheng. An FPGA implementation method of efficient deep convolution neural network based on HLS[D]. Xi′an:Xidian University,2019.
[17]Tian D, Lin C, Zhou J, et al. SA-YOLOv3: An efficient and accurate object detector using self.attention mechanism for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems,2020, 23(5):4099-4110.
[18]宋德江 .基于深度学习的车辆行为识别[ D].重庆:西南大学, 2021.
Song Dejiang. Vehicle behavior detection based on deep learning[D]. Chongqing:Southwest University,2021.
[19]Li Y,Guo Jh,Guo X m,et al. A novel target detection method of the unmanned surface vehicle under all.weather conditions with an improved YOLOV3[J]. Sensors, 2020,20(17):4885.
[20]彭国雯 .基于深度学习的场景文字检测算法的融合技术研究[ D].开封:河南大学, 2019.
[21]高嘉琳,白堂博,姚德臣,等 .基于改进 YOLOv4算法的铁路扣件检测[ J].科学技术与工程,2022,22(7): 2872-2877.
Gao Jialin,Bai Tangbo,Yao Dechen,et al. Detection of track fastener based on improved YOLOv4 algorithm[J]. Science Technology and Engineering, 2022, 22(7): 2872-2877.
|