[ 1]杨佳昊,左昊轩,黄祺成,等 .基于 YOLOv5s的作物叶片病害检测模型轻量化方法[ J].农业机械学报, 2023, 54(S1):222-229.
Yang Jiahao, Zuo Haoxuan, Huang Qicheng, et al. Lightweight method for crop leaf disease detection model based on YOLOv5s[J]. Transactions of the Chinese Society forAgriculturalMachinery,2023,54(S1):222-229.
[ 2]Huang X B,Chen A B,Zhou G X,et al. Tomato leaf disease detection system based on FC-SNDPN[J]. Multimedia ToolsandApplications,2023,82(2):2121-2144.
[ 3]Kaur Prabhjot,Harnal Shilpi,Gautam Vinay,et al. A novel transfer deep learning method for detection and classification of plant leaf disease[J]. Journal of Ambient Intelligence and Humanized Computing,2023,14(9): 12407-12424.
[ 4]李康顺,杨振盛,江梓锋,等 .基于改进 YOLOX-Nano的农作物叶片病害检测与识别方法[ J].华南农业大学学报, 2023,44(4):593-603.
Li Kangshun, Yang Zhensheng, Jiang Zifeng, et al. Detection and identification of crop leaf diseases based on improved YOLOX-Nano[J]. Journal of South China Agricultural University,2023,44(4):593-603.
[ 5]刘敏,周丽 .基于多尺度特征融合网络的苹果病害叶片检测[ J].中国农机化学报, 2023,44(8):184-190.
Liu Min,Zhou Li. Apple disease leaf detection based on multi.scale feature fusion network[J]. Journal of Chinese Agricultural Mechanization,2023,44(8):184-190.
[ 6]邢鹏康,李久朋 .基于小样本学习的马铃薯叶片病害检测[ J].江苏农业科学, 2023,51(15):203-210.
Xing Pengkang,Li Jiupeng. Potato leaf disease detection based on few.shot learning[J]. Jiangsu Agricultural Sciences,2023,51(15):203-210.
[ 7]马丽,周巧黎,赵丽亚,等 .基于深度学习的番茄叶片病害分类识别研究[ J].中国农机化学报, 2023,44(7): 187-193,206.
Ma Li, Zhou Qiaoli, Zhao Liya, et al. Classification and recognition of tomato leaf diseases based on deep learning[J]. Journal of Chinese Agricultural Mechanization,2023,44(7): 187-193,206.
[ 8]惠巧娟,孙婕 .基于多尺度特征度量元学习的玉米叶片病害识别模型研究[ J].江苏农业科学, 2023,51(9): 199-206.
Hui Qiaojuan,Sun Jie. Research on maize leaf disease recognition model based on multiscale feature metric meta-learning[J]. Jiangsu Agricultural Sciences,2023,51(9):199-206.
[ 9]黄炜,王娟娟,殷学丽 .基于特征分离的小样本苹果病害叶片检测[ J].江苏农业科学, 2023,51(23):195-202. Huang Wei,Wang Juanjuan,Yin Xueli. Few.shot apple disease leaves detection based on feature extraction[J]. Jiangsu Agricultural Sciences,2023,51(23):195-202.
[10]Bedi Punam,Gole Pushkar. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network[J]. Artificial Intelligence in Agriculture,2021,5:90-101.
[11]Zhao Yafeng,Chen Zhen,Gao Xuan,et al. Plant disease detection using generated leaves based on DoubleGAN[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,19(3): 1817-1826.
[12]Ying Li,Sun Shiyu,Zhang Changshe,et al. One.stage disease detection method for maize leaf based on multi.scale feature fusion[J]. Applied Sciences,2022,12(16): 7960.
[13]蒋清健,姚勇,王亚玲,等 .基于多尺度卷积神经网络算法的番茄叶片病害识别[ J].江苏农业科学, 2023,51(15):211-216.
Jiang Qingjiang,Yao Yong,Wang Yaling,et al. Tomato leaf disease recognition based on multi.scale convolutional neural network algorithm[J]. Jiangsu Agricultural Sciences,2023,51(15):211-216.
[14]Tian Y N,Li E,Liang Z Z,et al. Diagnosis of typical apple diseases: A deep learning method based on multi.scale dense classification network[J]. Frontiers in Plant Science,2021,12:698474.
[15]马晓,董天亮,钟闻宇,等 .基于改进 ConvNeXt的大豆叶片病害分类研究[ J].大豆科学, 2023,42(6):733-741.
Ma Xiao, Dong Tianliang, Zhong Wenyu, et al. Soybean leaf diseases classification method based on improved ConvNeXt[J]. Soybean Science, 2023, 42(6): 733-741.
[16]Lin H, Tse R, Tang S K, et al. Few-shot learning approach with multi.scale feature fusion and attention for plant disease recognition[J]. Frontiers in Plant Science, 2022,13:907916.
[17]李军,李志伟,李艳红 .基于多原型指导的小样本水稻害虫识别与分类[ J].江苏农业科学, 2023,51(20): 193-200.
Li Jun, Li Zhiwei, Li Yanhong. Few-shot rice pest recognition and classification based on multi.prototype guidance[J]. Jiangsu Agricultural Sciences, 2023, 51(20):193-200.
[18]刘媛媛,王定坤,邬雷,等 .基于知识蒸馏和模型剪枝的轻量化模型植物病害识别[ J].浙江农业学报, 2023,35(9):2250-2264.
Liu Yuanyuan, Wang Dingkun, Wu Lei, et al. A light.weight model for plant disease identification based on model pruning and knowledge distillation[J]. Acta Agriculturae Zhejiangensis,2023,35(9):2250-2264.
[19]Lin H,Tse R,Tang S K,et al. Few.shot learning for plant.disease recognition in the frequency domain[J]. Plants,2022,11(21):2814.
[20]Sun J Q,Cao W,Fu X,et al. Few.shot learning for plant disease recognition: A review[J]. Agronomy Journal, 2023,11(2):136-145.
|