[ 1 ] 陈翔宇, 阿不夏合满 ⋅ 穆巴拉克, 秦荣艳, 等. 辣椒及其副产品在动物生产中的应用研究进展[J]. 饲料研究, 2023, 46(18): 179-182.
[ 2 ] 张楠楠, 张晓, 白铁成, 等. 基于CBAM—YOLO v7的自然环境下棉叶病虫害识别方法[J]. 农业机械学报, 2023(S1):1-12.
Zhang Nannan, Zhang Xiao, Bai Tiecheng, et al. Identification method of cotton leaf pests and diseases in natural environment based on CBAM—YOLO v7 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023(S1): 1-12.
[ 3 ] Turkoglu M, Hanbay D, Sengur A. Multi‑model LSTM-based convolutional neural networks for detection of apple diseases and pests [J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(7): 3335-3345.
[ 4 ] 何前, 郭峰林, 王哲豪, 等. 基于改进AlexNet的葡萄叶部病害分类算法[J]. 扬州大学学报(自然科学版), 2023, 26(2): 52-58.
He Qian, Guo Fenglin, Wang Zhehao, et al. Grap leaf disease classification algorithm based on improved AlexNet [J]. Journal of Yangzhou University (Natural Science Edition), 2023, 26(2): 52-58.
[ 5 ] Alatawi A A, Alomani S M, Alhawiti N I, et al. Plant disease detection using AI based VGG-16 model [J]. International Journal of Advanced Computer Science and Applications, 2022, 13(4): 718-727.
[ 6 ] Dogra R, Rani S, Singh A, et al. Deep learning model for detection of brown spot rice leaf disease with smart agriculture [J]. Computers and Electrical Engineering, 2023, 109: 108659.
[ 7 ] 许可. 卷积神经网络在图像识别上的应用的研究[D]. 杭州: 浙江大学, 2013.
[ 8 ] 万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 209-221.
Wan Junjie, Qi Lijun, Lu Zhongao, et al. Recognition and grading of diseases and pests in orchard by GoogLeNet based on Transfer Learning [J]. Journal of China Agricultural University, 2021, 26(11): 209-221.
[ 9 ] 宋晨勇, 白皓然, 孙伟浩, 等. 基于GoogLeNet改进模型的苹果叶病诊断系统设计[J]. 中国农机化学报, 2021, 42(7): 148-155.
Song Chenyong, Bai Haoran, Sun Weihao, et al. Design of apple leaf disease diagnosis system based on GoogLeNet improved model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 148-155.
[10] 黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176.
|