[1] 李旭. 蚕豆综合加工利用研究进展[J]. 现代食品, 2018(7): 170-171.
Li Xu. Research progress of comprehensive processing and utilization of broad beans [J]. Modern Food, 2018 (7): 170-171.
[2] 张阳婷,黄德启,王东伟,等.基于深度学习的目标检测算法研究与应用综述[J].计算机工程与应用, 2023, 59(18): 1-13.
Zhang Yangting, Huang Deqi, Wang Dongwei, et al. A review on research and application of deep learningbased target detection algorithms [J]. Computer Engineering and Applications,2023, 59(18): 1-13.
[3] 张志杰,顾寄南,李静,等.基于深度学习的电子元器件快速检测算法研究[J]. 电子测量技术, 2022, 45(10): 93-101.
Zhang Zhijie, Gu Jinan, Li Jing, et al. Research on fast electronic component detection algorithm based on deep learning [J]. Electronic Measurement Technology, 2022, 45(10): 93-101.
[4] 张可,顾寄南,夏子林,等.基于深度学习的色环电阻检测与判读方法研究[J].电子测量技术,2022, 45(11): 126-133.
Zhang Ke, Gu Jinan, Xia Zilin, et al. Research on color ring resistor detection and interpretation method based on deep learning [J]. Electronic Measurement Technology, 2022, 45(11): 126-133.
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
[8] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C].Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[9] 程书帅,王霄,李伟,等. 基于改进YOLOv4的轻量级目标检测算法研究[J].微电子学与计算机, 2023, 40(6): 1-8.
Cheng Shushuai, Wang Xiao, Li Wei, et al. Research on lightweight target detection algorithm based on improved YOLOv4 [J]. Microelectronics & Computer, 2023, 40(6): 1-8.
[10] 王琳毅,白静,李文静,等.YOLO系列目标检测算法研究进展[J].计算机工程与应用, 2023, 59(14): 15-29.
Wang Linyi, Bai Jing, Li Wenjing, et al. Research progress of YOLO series target detection algorithms [J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[11] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. Computer VisionECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, Part Ⅰ 14. Springer International Publishing, 2016: 21-37.
[12] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[13] 翔云,陈其军,宋栩杰,等.基于深度学习的菜用大豆荚型表型识别方法[J].核农学报, 2022, 36(12): 2391-2399.
Xiang Yun, Chen Qijun, Song Xujie, et al. Deep learningbased identification method for vegetable soybean pod morphology traits [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2391-2399.
[14] 杨肖,袁锐波,李兆旭,等.改进YOLOv4的蚕豆苗检测算法及TensorRT加速[J].重庆理工大学学报(自然科学), 2023, 37(3): 312-320.
Yang Xiao, Yuan Ruibo, Li Zhaoxu, et al. The improved YOLOv4 algorithm for broad bean sprout detection and TensorRT acceleration [J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(3): 312-320.
[15] 郭希岳,李劲松,郑立华,等.利用Re-YOLOv5和检测区域搜索算法获取大豆植株表型参数[J].农业工程学报, 2022, 38(15): 186-194.
Guo Xiyue, Li Jinsong, Zheng Lihua, et al. Acquiring soybean phenotypic parameters using Re-YOLOv5 and area search algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 186-194.
[16] Ma J, Dai Y, Tan Y P. Atrous convolutions spatial pyramid network for crowd counting and density estimation [J]. Neurocomputing, 2019, 350: 91-101.
[17] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[18] Han K, Wang Y, Tian Q, et al. Ghostnet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[19] Tang Y, Han K, Guo J, et al. GhostNetV2: Enhance cheap operation with longrange attention [J]. arXiv preprint arXiv:221112905, 2022.
[20] Ding X, Zhang X, Ma N, et al. Repvgg: Making vggstyle convnets great again [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
|