[1] 刘丽娟, 刘仲鹏, 张丽梅. 基于图像处理技术的玉米叶部病害识别研究[J]. 吉林农业科学, 2014, 39(1): 61-65.Liu Lijuan, Liu Zhongpeng, Zhang Limei. Studies on image processing of maize leaf diseases [J]. Journal of Jilin Agricultural Sciences, 2014, 39(1): 61-65.
[2] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18.
[3] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks [C].Advances in Neural Information Processing Systems, 2012.
[4] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. arXiv preprint arXiv: 1409. 1556, 2014.
[5] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[6] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[7] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[8] Howard A, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv: 1704. 04861, 2017.
[9] 宋晨勇, 白皓然, 孙伟浩, 等. 基于GoogLeNet改进模型的苹果叶病诊断系统设计[J]. 中国农机化学报, 2021, 42(7): 148-155.
Song Chenyong, Bai Haoran, Sun Weihao, et al. Design of apple leaf disease diagnosis system based on GoogLeNet improved model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 148-155.
[10] 李恩霖, 谢秋菊, 苏中滨, 等. 基于深度学习的玉米叶片病斑识别方法研究[J]. 智慧农业导刊, 2021, 1(10): 1-10.Li Enlin, Xie Qiuju, Su Zhongbin, et al. Research on maize leaf disease spot recognition based on deep learning [J]. Journal of Smart Agriculture, 2021, 1(10): 1-10.
[11] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236.
Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236.
[12] 李静, 陈桂芬, 安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报, 2020, 41(3): 110-116.Li Jing, Chen Guifen, An Yu. Image recognition of pyrausta nubilalis based on optimized convolutional neural network [J]. Journal of South China Agricultural University, 2020, 41(3): 110-116.
[13] 杨长磊, 李彩林, 王佳文, 等. 基于改进深度神经网络的农作物病害识别研究[J]. 农业与技术, 2021, 41(6): 1-3.
[14] Mohanty S P, Hughes D P, Salathé M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1419.
[15] 杨朋波, 桑基韬, 张彪, 等. 面向图像分类的深度模型可解释性研究综述[J]. 软件学报, 2023, 34(1): 230-254.Yang Pengbo, Sang Jitao, Zhang Biao, et al. Survey on interpretability of deep models for image classification [J]. Journal of Software, 2023, 34(1): 230-254.
[16] 陈冲, 陈杰, 张慧, 等. 深度学习可解释性综述[J]. 计算机科学, 2023, 50(5): 52-63.Chen Chong, Chen Jie, Zhang Hui, et al. A Review of interpretability in deep learning [J]. Computer Science, 2023, 50(5): 52-63.
[17] Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[18] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradientbased localization [C]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
[19] Ribeiro M T, Singh S, Guestrin C. “Why should i trust you?” explaining the predictions of any classifier [C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 1135-1144.
[20] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.Zhuang Fuzhen, Luo Ping, He Qing, et al. Survey on transfer learning research [J]. Journal of Software, 2015, 26(1): 26-39.
[21] Ishengoma F S, Rai I A, Said R N. Identification of maize leaves infected by fall armyworms using UAVbased imagery and convolutional neural networks [J]. Computers and Electronics in Agriculture, 2021, 184: 106124.
[22] 苏炯铭, 刘鸿福, 项凤涛, 等. 深度神经网络解释方法综述[J]. 计算机工程, 2020, 46(9): 1-15.Su Jiongming, Liu Hongfu, Xiang Fengtao, et al. Survey of interpretation methods for deep neural networks [J]. Computer Engineering, 2020, 46(9): 1-15.
[23] Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradientbased localization [C]. IEEE International Conference on Computer Vision. IEEE, 2017.
[24] Smilkov D, Thorat N, Kim B, et al. SmoothGrad: Removing noise by adding noise [J]. arXiv Preprint arXiv: 1706. 03825, 2017.
[25] Woo S, Park J, Lee J, et al. CBAM: Convolutional block attention module [C]. Proceedings of the 15th European Conference on Computer Vision (ECCV), 2018.
[26] 张俊宁, 毕泽洋, 闫英, 等. 基于注意力机制与改进YOLO的温室番茄快速识别[J]. 农业机械学报, 2023, 54(5): 236-243.
Zhang Junning, Bi Zeyang, Yan Ying, et al. Fast recognition of greenhouse tomato targets based on attention mechanism and improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 236-243.
[27] 王昕, 董琴, 杨国宇. 基于优化CBAM改进YOLOv5的农作物病虫害识别[J]. 计算机系统应用, 2023, 32(7): 261-268.Wang Xin, Dong Qin, Yang Guoyu. YOLOv5 improved by optimized CBAM for crop pest identification [J]. Computer Systems & Applications, 2023, 32(7): 261-268.
[28] 卫雅娜, 王志彬, 乔晓军, 等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181.
Wei Yana, Wang Zhibin, Qiao Xiaojun, et al. Lightweight rice disease identification method based on attention mechanism and EfficientNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181.
[29] 张瑞青, 李张威, 郝建军, 等. 基于迁移学习的卷积神经网络花生荚果等级图像识别[J]. 农业工程学报, 2020,36(23): 171-180.Zhang Ruiqing, Li Zhangwei, Hao Jianjun, et al. Image recognition of peanut pod grades based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 171-180.
[30] 周慧升. 玉米灰斑病的发生及综合防治[J]. 云南农业, 2020(8): 56-58.
[31] 于雪莹, 高继勇, 王首程, 等. 基于生成对抗网络和混合注意力机制残差网络的苹果病害识别[J]. 中国农机化学报, 2022, 43(6): 166-174.
Yu Xueying, Gao Jiyong, Wang Shoucheng, et al. Apple disease recognition based on wassersteingenerative adversarialnetworks and hybrid attention mechanism residual network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 166-174.
|