[1] Miriti E. Classification of selected apple fruit varieties using Naive Bayes [D]. Nairobi:University of Nairobi, 2016.
[2] Ali M A H, Thai K W. Automated fruit grading system [C]. 2017 IEEE 3rd International Symposium in Robotics and Manufacturing Automation (ROMA). IEEE, 2017: 1-6.
[3] Saranya N, Srinivasan K,et al. Fruit classification using traditional machine learning and deep learning approach [C]. Computational Vision and BioInspired Computing: Springer International Publishing, 2020: 79-89.
[4] Jia W, Tian Y, Luo R, et al. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot [J]. Computers and Electronics in Agriculture, 2020, 172: 105380.
[5] Gill H S, Khehra B S. Fruit image classification using deep learning [J]. Computers, Materials & Continua, 2022, 71(3).
[6] 向锐, 孙艺萌, 梁晨, 等. 葡萄PLATZ家族基因鉴定及其在种子发育过程中的表达分析[J]. 果树学报, 2023, 40(1): 13-24.
Xiang Rui, Sun Yimeng, Liang Chen, et al. Genomewide identification of grape PLATZ family genes and expression analysis during seed development [J]. Journal of Fruit Science, 2023, 40(1): 13-24.
[7] 韦晓霞, 梁党弟, 赖瑞联, 等. 优质早熟大果百香果新品种蜜语的选育[J]. 果树学报, 2023, 40(1): 187-190.
Wei Xiaoxia, Liang Dangdi, Lai Ruilian, et al. A new earlymaturing and highyielding passion fruit cultivar Miyu [J]. Journal of Fruit Science, 2023, 40(1): 187-190.
[8] Feng J, Zeng L, He L. Apple fruit recognition algorithm based on multispectral dynamic image analysis [J]. Sensors, 2019, 19(4): 949.
[9] Wang Y, Chen Y. Fruit morphological measurement based on threedimensional reconstruction [J]. Agronomy, 2020, 10(4): 455.
[10] 林云森, 范文强, 姜佳良. 基于深度学习的水果识别技术研究[J]. 光电技术应用, 2019, 34(6): 45-48, 58.
Lin Yunsen, Fan Wenqiang, Jiang Jialiang. Research on fruit recognition technology based on deep learning [J].ElectroOptic Technology Application, 2019, 34(6): 45-48, 58.
[11] 黄玉富, 朴燕, 张汉辉. 基于多尺度特征融合的水果图像识别算法研究[J]. 长春理工大学学报(自然科学版), 2021, 44(1): 87-94.
Huang Yufu, Pu Yan,Zhang Hanhui. Research on fruit image recognition algorithm based on multiscale feature fusion [J]. Journal of Changchun University of Science and Technology, 2021, 44(1): 87-94.
[12] 陈雪鑫, 卜庆凯. 基于改进的最大类间方差法的水果图像识别研究[J].青岛大学学报(工程技版), 2019, 34(2):33-38, 62.
Chen Xuexin, Bu Qingkai. Fuzzy backstepping position control for flexible joint robots [J].Journal of Qingdao University (Engineering & Technology Edition), 2019, 34(2): 33-38, 62.
[13] Hussain D, Hussain I, Ismail M, et al. A simple and efficient deep learningbased framework for automatic fruit recognition [J]. Computational Intelligence and Neuroscience, 2022(1): 6538117.
[14] Zhang Y D, Dong Z, Chen X, et al.Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation [J]. Multimedia Tools and Applications, 2019, 78: 3613-3632.
[15] Xiang Q, Wang X, Li R, et al.Fruit image classification based on Mobilenetv2 with transfer learning technique [C]. Proceedings of the 3rd International Conference on Computer Science and Application Engineering. 2019: 1-7.
[16] Nikhitha M, Sri S R, Maheswari B U. Fruit recognition and grade of disease detection using inception v3 model [C]. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2019: 1040-1043.
[17] Duong L T, Nguyen P T,Di Sipio C,et al. Automated fruit recognition using EfficientNet and MixNet [J]. Computers and Electronics in Agriculture, 2020, 171: 105326.
[18] He K, Zhang X,Ren S,et al.Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] Grandini M, Bagli E, Visani G. Metrics for multiclass classification: An overview [J]. arXiv preprint arXiv: 200805756, 2020.
|