English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (7): 222-227.DOI: 10.13733/j.jcam.issn.2095-5553.2024.07.033

• 农业智能化研究 • 上一篇    下一篇

基于卷积神经网络的入侵昆虫识别研究

黄亦其1,鹿林飞1,沈豪1, 2,王福宽1, 2,乔曦1, 2   

  1. 1. 广西大学机械工程学院,南宁市,530004; 2. 中国农业科学院(深圳)农业基因组研究所,深圳市, 518120
  • 出版日期:2024-07-15 发布日期:2024-06-24
  • 基金资助:
    国家重点研发计划项目(2021YFD1400100,2021YFD1400101);广西自然科学基金项目(2021JJA130221);深圳市科技计划(KQTD20180411143628272)

Research on invading insect recognition based on convolutional neural network 

Huang Yiqi1, Lu Linfei1, Shen Hao1, 2, Wang Fukuan1, 2, Qiao Xi1, 2   

  1. 1. College of Mechanical Engineering, Guangxi University, Nanning, 530004, China;
    2. Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
  • Online:2024-07-15 Published:2024-06-24

摘要: 现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷积神经网络模型DenseNet121、MobileNetV3、ResNet101和ShuffleNet对其进行训练测试分析讨论。结果表明,在入侵昆虫综合识别系统识别功能后台算法应用上,MobileNetV3表现出更好的综合性能。根据MobileNetV3模型现有缺陷和模型特性,对MobileNetV3模型指定瓶颈层的注意力机制和激活函数进行改进,改进后模型的准确率为92.8%,单张测试集图像的平均识别时间0.012 s,相较于原MobileNetV3模型分别提高0.5%、缩短15.2%,可以很好满足多昆虫识别分类需求。

关键词: 入侵昆虫, 卷积神经网络, 模型改进, 图像识别

Abstract: The existing insect related recognition algorithms have few kinds of recognition, lack of classification and recognition algorithms for a large number of invasive insects, and are difficult to provide stable and efficient technical support for the recognition function of the integrated invasive insect system. In this study, 31 kinds of invasive insect images are collected, processed and divided into data sets. Based on four convolutional neural network models, DenseNet121, MobileNetV3, ResNet101 and Shuffle Net, training, testing, analysis and discussion are carried out. The results show that MobileNetV3 has better comprehensive performance in the background algorithm application of the identification function of the invasive insect integrated recognition system. According to the existing defects and model characteristics of the MobileNetV3 model, the attention mechanism and activation function of the designated bottleneck layer of the MobileNetV3 model are improved. The accuracy of the improved model is 92.8%, and the average recognition time of a single test set image is 0.012 s, which is 0.5% higher and 15.2% shorter than the original MobileNetV3 model, which can well meet the requirements of multi insect recognition and classification.

Key words:  invasive insects, convolutional neural network, model improvement, image recognition

中图分类号: