[1] Mielke M S, Lobo L S, da Costa G S, et al. Predictions of chlorophyll concentrations in the leaves of seedlings of two congeneric tropical trees from RGB digital image components [J]. Southern Forests: A Journal of Forest Science, 2021, 83(2): 177-184.
[2] MendozaTafolla R O, OntiverosCapurata R E, JuarezLopez P, et al. Nitrogen and chlorophyll status in romaine lettuce using spectral indices from RGB digital images [J]. ZemdirbysteAgriculture, 2021, 108(1).
[3] Milagres C C, Fontes P C R, Abreu J A A, et al. Plant growth stage and leaf part to diagnose sweet corn nitrogen status using chlorophyll sensor and scanner image analysis [J]. Journal of Plant Nutrition, 2021, 44(18): 2783-2792.
[4] Guo Y, Yin G, Sun H, et al. Scaling effects on chlorophyll content estimations with RGB camera mounted on a UAV platform using machinelearning methods [J]. Sensors, 2020, 20(18): 5130.
[5] do Amaral, Elizabeth S S, Daniela V D A, et al. Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage [J]. New Forests, 2019, 50: 377-388.
[6] 李修华, 卢显杰, 奚金阳, 等. 智能手机RGB图像检测植物叶片叶绿素含量的通用方法[J]. 农业工程学报, 2021, 37(22): 145-151.
Li Xiuhua, Lu Xianjie, Xi Jinyang, et al. Universal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 145-151.
[7] 李丽, 程灵. 基于RGB模型建立快速检测番茄叶片叶绿素含量的方法[J]. 分子植物育种, 2021, 19(20): 6906-6909.
Li Li, Cheng Ling. A method for rapid detection of chlorophyll content in tomato leaves based on RGB model [J]. Molecular Plant Breeding, 2021, 19(20): 6906-6909.
[8] 宋一帆, 张武, 姚雨晴, 等. 基于RGB模型的大豆叶片叶绿素含量预测[J]. 江汉大学学报(自然科学版), 2020, 48(1): 65-72.
Song Yifan, Zhang Wu, Yao Yuqing, et al. Estimation of Chlorophyll content in soybean leaves based on RGB model [J]. Journal of Jianghan University (Natural Science Edition), 2020, 48(1): 65-72.
[9] 孙红, 邢子正, 乔浪, 等. 基于光饱和影响校正的作物叶绿素分布光谱成像检测[J]. 光谱学与光谱分析, 2019, 39(12): 3897-3903.
Sun Hong, Xing Zizheng, Qiao Lang, et al. Spectral imaging detection of crop chlorophyll distribution based on optical saturation effect correction [J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3897-3903.
[10] 程立真, 朱西存, 高璐璐, 等. 基于RGB模型的苹果叶片叶绿素含量估测[J]. 园艺学报, 2017, 44(2): 381-390.
Cheng Lizhen, Zhu Xicun,Gao Lulu, et al. Estimation of chlorophyll content in apple leaves based on RGB model using digital camera [J]. Acta Horticulturae Sinica, 2017, 44(2): 381-390.
[11] 曲怡铃, 唐燕, 周忠生, 等. 基于无人机可见光影像的毛竹相对叶绿素含量反演研究[J]. 江西农业大学学报, 2022, 44(1): 139-150.
Qu Yiling, Tang Yan, Zhou Zhongsheng, et al. Study on model simulation of relative chlorophyll content of Moso bamboo based on UAV visible light image [J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 139-150.
[12] 张慧春, 张萌, 边黎明, 等. 基于YOLO v5的植物叶绿素含量估测与可视化技术[J]. 农业机械学报, 2022, 53(4): 313-321.
Zhang Huichun, Zhang Meng, Bian Liming, et al. Estimation and visualization of chlorophyll content in plant based on YOLO v5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 313-321.
[13] 杨爱萍, 张坤, 段里成, 等. 基于RGB与HSV颜色空间的水稻齐穗后叶片SPAD值估测方法研究[J]. 江西农业学报, 2019, 31(8): 106-112.
Yang Aiping, Zhang Kun, Duan Licheng, et al. Estimation method for SPAD value of rice leaves after full heading based on RGB and HSV color space [J]. Acta Agriculturae Jiangxi, 2019, 31(8): 106-112.
|