[ 1 ] 曹子健, 王守现, 郑素月, 等. 香菇菌棒污染菌宛氏拟青霉的鉴定及其与香菇菌丝的相互作用[J]. 北方园艺, 2022(14): 116-125
Cao Zijian, Wang Shouxian, Zheng Suyue, et al. Identification of Paecilomyces variotii on contaminated artificial Bed‑logs of Lentinula Edodes and their interactions [J]. North Horticulture, 2022(14): 116-125.
[ 2 ] Gong W, Zhang W, Bilal M, et al. Efficient web APIs recommendation with privacy‑preservation for mobile App development in industry 4.0 [J]. IEEE Transactions on Industrial Informatics, 2021, 18(9): 6379-6387.
[ 3 ] Wang D, Wang J, Ren Z, et al. DHBP: A dual‑stream hierarchical bilinear pooling model for plant disease multi‑task classification [J]. Computers and Electronics in Agriculture, 2022, 195: 106788.
[ 4 ] Wang G, Wang J, Yu H, et al. Research on identification of corn disease occurrence degree based on improved ResNeXt network [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(2): 2250005.
[ 5 ] Zu Dawei, Zhang Feng, Wu Qiulan, et al. Disease identification of Lentinus Edodes logs based on deep learning model [J]. Complexity, 2022: 1-9.
[ 6 ] Zu Dawei, Zhang Feng, Wu Qiulan, et al. Sundry bacteria contamination identification of Lentinula edodes logs based on deep learning model [J]. Agronomy, 2022, 12(9): 2121.
(下转第244页)
(上接第223页)
[ 7 ] Redmon J. YOLOv3: An incremental improvement [J]. arxiv Preprint arxiv: 1804.02767, 2018.
[ 8 ] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv Preprint arXiv: 2004.10934, 2020.
[ 9 ] Zheng Z, Wang P, Ren D, et al. Enhancing geoindicator factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[10] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression [J]. arXiv Preprint arXiv: 2205.12740, 2022.
[11] Tan X, Peng H. Improved YOLOv5 SAR image ship target detection [J]. Computer Engineering and Application, 2022, 58(4): 247-254.
[12] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[13] Li Hulin, Li Jun, Wei Hanbing, et al. Slim‑neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles [J]. arXiv preprint arXiv: 2206.02424, 2022.
[14] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[15] Wong L J, Michaels A J. Transfer learning for radio frequency machine learning: A taxonomy and survey [J]. Sensors, 2022, 22(4): 1416.
[16] Selvaraju R R, Cogswell M, Das A, et al. Grad—CAM: Visual explanations from deep networks via gradient‑based localization [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626.
|