[1] 郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166.
Guo Wenjuan, Feng Quan, Li Xiangzhou. Research progress of convolutional neural network model based on crop disease detection and recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166.
[2] Pydipati R, Burks T F, Lee W S. Identification of citrus disease using color texture features and discriminant analysis [J]. Computers and Electronics in Agriculture, 2006, 52: 49-59.
[3] Simonyan K, Zisserman A. Very deep convolutional networks for large scale image recognition [J]. ArXiv Preprint, 2014.
[4] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions [C]. Computer Vision and Pattern Recognition, Boston, 2015: 1-9.
[5] He K M, Zhang X Y, Ren S O, et al. Deep residual leaning for image recognition [C]. Computer Vision and Pattem Recognition Las Vegas, 2016: 770-778.
[6] Huang G, Liu Z, MaatenL V D, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[7] 宋中山, 汪进, 郑禄, 等. 基于二值化的Faster RCNN柑橘病虫害识别研究[J]. 中国农机化学报, 2022, 43(6):150-158.
Song Zhongshan, Wang Jin, Zhen Lu, et al. Research on citrus pest identification based on Binary Faster RCNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 150-158.
[8] 牛冲. 基于图像处理的草莓病害识别方法研究[D]. 太原: 太原理工大学, 2016.Niu Chong. Research on recognition method of strawberry disease based on image processing [D]. Taiyuan: Taiyuan University of Technology, 2016.
[9] 宋怀波, 马宝玲, 尚钰莹, 等. 基于YOLO v7ECA模型的苹果幼果检测[J]. 农业机械学报, 2023, 54(6): 233-242.
Song Huaibo, Ma Baoling, Shang Yuying, et al. Detection of young apple fruits based on YOLO v7ECA model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 233-242.
[10] 郭辉, 陈海洋, 高国民, 等. 基于YOLO v5m的红花花冠目标检测与空间定位方法[J]. 农业机械学报, 2023, 54(7): 272-281.
Guo Hui, Chen Haiyang, Gao Guomin, et al. Safflower corolla object detection and spatial positioning methods based on YOLO v5m [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 272-281.
[11] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.〖JP2〗Shao Yanhua, Zhang Duo, Chu Hongyu, et al. A review of YOLO object detection based on deep learning [J].〖JP〗 Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[12] 李成跃, 姚剑敏, 林志贤, 等. 基于改进YOLO轻量化网络的目标检测方法[J]. 激光与光电子学进展, 2020, 57(14): 45-53.Li Chengyue, Yao Jianmin, Lin Zhixian, et al. Object detection method based on improved YOLO lightweight network [J]. Laser & Optoelectronics Progress, 2020, 57(14): 45-53.
[13] 崔家华, 张云洲, 王争, 等. 面向嵌入式平台的轻量级目标检测网络[J]. 光学学报, 2019, 39(4): 307-313.〖JP2〗Cui Jiahua, Zhang Yunzhou, Wang Zheng, et al. Lightweight object detection networks for embedded platform [J]. Acta Optica Sinica, 2019, 39(4): 307-313.
[14] 李建, 杜建强, 朱彦陈, 等. 基于Transformer的目标检测算法综述[J]. 计算机工程与应用, 2023, 59(10): 48-64.Li Jian, Du Jianqiang, Zhu Yanchen, et al. Survey of transformerbased object detection algorithms [J]. Computer Engineering and Applications, 2023, 59(10): 48-64.
[15] Wang Q L. Wu B G, Zhu P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[16] Zhu X K, Lyu S C, Wang X, et al. TPHYOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on dronecaptured scenarios [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2021: 2778-2788.
[17] 宋怀波, 李嵘, 王云飞, 等. 基于ECAYOLO v5s网络的重度遮挡肉牛目标识别方法[J]. 农业机械学报, 2023, 54(3): 274-281.
Song Haibo, Li Rong, Wang Yunfei, et al. Recognition method of heavily occluded beef cattle targets based on ECAYOLO v5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 274-281.
[18] 王江晴, 冀星, 莫海芳, 等. 基于轻量化VGG的植物病虫害识别[J]. 中国农机化学报, 2022, 43(4): 25-31.
Wang Jiangqing, Ji Xing, Mo Haifang, et al. Plant disease detection based on lightweight VGG [J]. Journal of Chinese Agricultural Mechanization, 2022,43(4):25-31.
[19] 李书琴, 陈聪, 朱彤, 等. 基于轻量级残差网络的植物叶片病害识别[J]. 农业机械学报, 2022, 53(3): 243-250.
Li Shuqin, Chen Cong, Zhu Tong, et al. Plant leaf disease identification based on lightweight residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 243-250.
[20] 李功, 赵巍, 刘鹏, 等. 一种用于目标跟踪边界框回归的光滑IoU损失[J]. 自动化学报, 2023, 49(2): 288-306.
Li Gong, Zhao Wei, Liu Peng, et al. SmoothIoU loss for bounding box regression in visual tracking [J]. Acta Automatica Sinica, 2023, 49(2): 288-306.
|