[1]
Tang J L, Chen X Q, Miao R H, et al. Weed detection using image processing under different illumination for sitespecific areas spraying [J]. Computers and Electronics in Agriculture, 2016, 122: 103-111.
[2]
吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589.
Wu Xuemei, Zhang Fugui, Lü Jingtang. Research on recognition of tea tender leaf based on image color information [J]. Journal of Tea Science, 2013, 33(6): 584-589.
[3]
Tang J L, Wang D, Zhang Z G, et al. Weed identification based on Kmeans feature learning combined with convolutional neural network[J]. Computers and Electronics in Agriculture, 2017, 135: 63-70.
[4]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5]
Jiang H, Zhang C, Qiao Y, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming[J]. Computers and Electronics in Agriculture, 2020, 174: 105450.
[6]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[7]
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8]
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[9]
Girshick R. Fast R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[10]
Gan H, Lee W S, Alchanatis V, et al. Immature green citrus fruit detection using color and thermal images [J]. Computers and Electronics in Agriculture, 2018, 152: 117-125.
[11]
Chen YT, Chen SF. Localizing plucking points of tea leaves using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 171: 105298.
[12]
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[13]
张成标, 童宝宏, 程进, 等. 改进的Yolo_v2违章车辆检测方法[J]. 计算机工程与应用, 2020, 56(20): 104-110.
Zhang Chengbiao, Tong Baohong, Cheng Jin, et al. Improved Yolo_v2 illegal vegucle detection method [J]. Computer Engineering and Applications, 2020, 56(20): 104-110.
[14]
成伟, 张文爱, 冯青春, 等. 基于改进YOLOv3的温室番茄果实识别估产方法[J]. 中国农机化学报, 2021, 42(4): 176-182.
Cheng Wei, Zhang Wenai, Feng Qingchun, et al. Method of greenhouse tomato fruit identification and yield estimation based on improved YOLOv3[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 176-182.
[15]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[16]
聂鑫, 刘文, 吴巍. 复杂场景下基于增强YOLOv3的船舶目标检测[J]. 计算机应用, 2020, 40(9): 2561-2570.
Nie Xin, Liu Wen, Wu Wei. Ship detection based on enhanced YOLOv3 under complex enviroments [J]. Journal of Computer Applications, 2020, 40(9): 2561-2570.
|