[1]
Reyazul R M, Mathew R, Francisco P, et al. Highthroughput phenotyping for crop improvement in the genomics era [J]. Plant Science, 2019(282): 60-72.
[2]
Gerland P, Raftery A E, Sevcikova H, et al. World population stabilization unlikely this century [J]. Science, 2014, 346(6206): 234-237.
[3]
邓若玲, 潘威杰, 王志琪, 等. 农作物表型技术及其智能装备研究进展与展望[J]. 现代农业装备, 2021, 42(1): 2-9.
Deng Ruoling, Pan Weijie, Wang Zhiqi, et al. Research progress and prospect of crop phenotyping technology and its intelligent equipment[J]. Modern Agricultural Equipment, 2021, 42(1): 2-9.
[4]
卢少志, 杨蒙, 杨万能, 等. 田间作物表型检测平台设计与试验[J]. 华中农业大学学报, 2021, 40(4): 209-218.
Lu Shaozhi, Yang Meng, Yang Wanneng, et al. Design and experiment of a platform for detecting phenotype of field crop[J]. Journal of Huazhong Agricultural University, 2021, 40(4): 209-218.
[5]
胡伟娟, 傅向东, 陈凡, 等. 新一代植物表型组学的发展之路[J]. 植物学报, 2019, 54(5): 558-568.
Hu Weijuan, Fu Xiangdong, Chen Fan, et al. A path to next generation of plant phenomics [J]. Chinese Bulletin of Botany, 2019, 54(5): 558-568.
[6]
Song P, Wang J, Guo X, et al. Highthroughput phenotyping: Breaking through the bottleneck in future crop breeding [J]. The Crop Journal, 2021, 9(3): 633-645.
[7]
Yang W, Feng H, Zhang X, et al. Crop phenomics and highthroughput phenotyping: Past decades, current challenges, and future perspectives [J]. Molecular Plant, 2020, 13(2): 187-214.
[8]
张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.
Zhang Huichun, Zhou Hongping, Li Dandan, et al. Research progress and prospect in plant phenotyping platform and image analysis technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 1-17.
[9]
唐惠燕, 倪峰, 李小涛, 等. 基于Scopus的植物表型组学研究进展分析[J]. 南京农业大学学报, 2018, 41(6): 1133-1141.
Tang Huiyan, Ni Feng, Li Xiaoqing, et al. Analysis of the advance in plant phenomics research based on Scopus tools [J]. Journal of Nanjing Agricultural University, 2018, 41(6): 1133-1141.
[10]
刘玉荣, 周荣, 强生军. 基于专利分析的全球农药残留检测技术发展态势研究[J]. 中国农机化学报, 2022, 43(7): 138-144.
Liu Yurong, Zhou Rong, Qiang Shengjun. Research on the development trend of global pesticide residue detection technology based on patent analysis[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 138-144.
[11]
林云龙, 杨发展, 李维华. 基于专利分析法的生姜机械化种植技术研究进展分析[J]. 中国农机化学报, 2022, 43(4): 90-97, 115.
Lin Yunlong, Yang Fazhan, Li Weihua. Analysis of research progress on mechanized ginger planting technology based on the patent analysis method[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 90-97, 115.
[12]
袁文胜, 曹光乔, 金诚谦, 等. 基于专利信息的施肥机械化技术发展与竞争态势分析[J]. 中国农机化学报, 2019, 40(12): 47-52.
Yuan Wensheng, Cao Guangqiao, Jin Chengqian, et al. Analysis on the development and competitive situation of fertilizer mechanization technology based on patent information[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 47-52.
[13]
刘勤, 杨玉明, 胡良龙, 等. 棉花生产机械化技术专利信息分析[J]. 中国农机化学报, 2019, 40(5): 206-210.
Liu Qin, Yang Yuming, Hu Lianglong, et al. Patent data analysis on cotton production mechanization technology [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(5): 206-210.
[14]
陶于祥, 吴超楠, 李晶莹, 等. 基于技术生命周期的中美人工智能原始创新能力研究[J]. 中国电子科学研究院学报, 2021, 16(12): 1215-1223.
Tao Yuxiang, Wu Chaonan, Li Jingying, et al. Research on the original innovation capability of artificial intelligence [J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(12): 1215-1223.
[15]
王山. 基于多指标体系的技术生命周期判断方法研究[J]. 现代情报,2022, 42(3): 77-85.
Wang Shan. Method research of technology life cycle judgement based on multiindicators measurement system [J]. Journal of Modern Information, 2022, 42(3): 77-85.
[16]
徐笑阳, 劳新斌, 周琴. 专利视角下航空航天用SiC基陶瓷材料全球技术发展态势及热点分析[J]. 中国陶瓷, 2022, 58(6): 9-16.
Xu Xiaoyang, Lao Xinbin, Zhou Qin. Global technology development trend and hotspot analysis of SiC-based ceramic materials for aerospace from the perspective of patents [J]. China Ceramics, 2022, 58(6): 9-16.
[17]
刘勤, 张熠, 杨玉明, 等. 基于专利大数据的油菜产业发展研究[J]. 中国农业科技导报, 2018, 20(10): 1-8.
Liu Qin, Zhang Yi, Yang Yuming, et al. Study on development of rape industry based on patent large data [J]. Journal of Agricultural Science and Technology, 2018, 20(10): 1-8.
[18]
李建新, 杨永春, 蒋小荣, 等. 1998—2013年中国地级单元制造业规模与结构高级度协调发展的时空特征[J]. 地理科学, 2018, 38(12): 2014-2023.
Li Jianxin, Yang Yongchun, Jiang Xiaorong et al. Spatialtemporal patterns and coordination of manufacturing scale and structure in China during 1998—2013[J]. Scientia Geographica Sinica, 2018, 38(12): 2014-2023.
[19]
段德忠, 谌颖, 杜德斌. 技术转移视角下中国三大城市群区域一体化发展研究[J]. 地理科学, 2019, 39(10): 1581-1591.
Duan Dezhong, Chen Ying, Du Debin. Regional integration process of Chinas three major urban agglomerations from the perspective of technology transfer [J]. Scientia Geographica Sinica, 2019, 39(10): 1581-1591.
[20]
王立伟, 姚景怡, 李丹丹, 等. 基于专利数据的长三角疫苗技术创新态势分析及发展建议[J]. 生命科学, 2022, 34(7): 897-906.
Wang Liwei, Yao Jingyi, Li Dandan, et al. Analysis and development suggestions on the innovation situation of vaccine technology in Yangtze River Delta based on patent data [J]. Life Science, 2022, 34(7): 897-906.
|