[1]
朱德峰, 王亚梁. 全球水稻生产时空变化特征分析[J]. 中国稻米, 2021, 27(1): 7-8, 13.
Zhu Defeng, Wang Yaliang. Analysis of characteristics of temporal and spatial variation of rice production in the world [J]. China Rice, 2021, 27(1): 7-8, 13.
[2]
刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46.
Liu Wancai, Liu Zhendong, Huang Chong, et al. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years [J]. Plant Protection, 2016, 42(5): 1-9, 46.
[3]
王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报,2021, 42(11): 122-129.
Wang Linbai, Zhang Bo, Yao Jingfa, et al. Potato leaf disease recognition and potato leaf disease spot detection based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129.
[4]
项小东, 翟蔚, 黄言态, 等. 基于Xception-CEMs神经网络的植物病害识别[J]. 中国农机化学报, 2021, 42(8): 177-186.
Xiang Xiaodong, Zhai Wei, Huang Yantai, et al. Plant disease recognition based on Xception-CEMs neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 177-186.
[5]
黄双萍, 齐龙, 马旭, 等. 基于高光谱成像的水稻穗瘟病害程度分级方法[J]. 农业工程学报, 2015, 31(1): 212-219.
Huang Shuangping, Qi Long, Ma Xu, et al. Grading method of rice panicle blast severity based on hyperspectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 212-219.
[6]
樊湘鹏, 周建平, 许燕, 等. 基于改进卷积神经网络的复杂背景下玉米病害识别[J]. 农业机械学报, 2021, 52(3): 210-217.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Corn disease recognition under complicated background based on improved convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 210-217.
[7]
杨森, 冯全, 张建华, 等. 基于深度学习与复合字典的马铃薯病害识别方法[J]. 农业机械学报, 2020, 51(7): 22-29.
Yang Sen, Feng Quan, Zhang Jianhua, et al. Identification method for potato disease based on deep learning and composite dictionary [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 22-29.
[8]
刘文波, 叶涛, 李颀. 基于改进SOLO v2的番茄叶部病害检测方法[J]. 农业机械学报, 2021, 52(8): 213-220.
Liu Wenbo, Ye Tao, Li Qi. Tomato leaf disease detection method based on improved SOLO v2 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 213-220.
[9]
鲍文霞, 黄雪峰, 胡根生, 等. 基于改进卷积神经网络模型的玉米叶部病害识别(英文)[J]. 农业工程学报, 2021, 37(6): 160-167.
Bao Wenxia, Huang Xuefeng, Hu Gensheng, et al. Identification of maize leaf diseases using improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 160-167.
[10]
马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192.
Ma Juncheng, Du Keming, Zheng Feixiang, et al. Disease recognition system for greenhouse cucumbers based on deep convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 186-192.
[11]
苏仕芳, 乔焰, 饶元. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报, 2021, 37(10): 127-134.
Su Shifang, Qiao Yan, Rao Yuan. Recognition of grape leaf diseases and mobile application based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 127-134.
[12]
Jiang Z, Dong Z, Jiang W, et al. Recognition of rice leaf diseases and wheat leaf diseases based on multitask deep transfer learning [J]. Computers and Electronics in Agriculture, 2021, 186: 106184.
[13]
Waheed A, Goyal M, Gupta D, et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf [J]. Computers and Electronics in Agriculture, 2020, 175: 105456.
[14]
黄林生, 罗耀武, 杨小冬, 等. 基于注意力机制和多尺度残差网络的农作物病害识别[J]. 农业机械学报, 2021, 52(10): 264-271.
Huang Linsheng, Luo Yaowu, Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multiscale residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271.
[15]
Mohanty S P, Hughes D P, Salath M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1419.
[16]
郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169.
Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved Multi-Scale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169.
[17]
Gao R, Wang R, Feng L, et al. Dualbranch, efficient, channel attentionbased crop disease identification [J]. Computers and Electronics in Agriculture, 2021, 190: 106410.
[18]
王东方, 汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报, 2021, 37(4): 199-207.
Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residual networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 199-207.
[19]
Atila , Ucar M, Akyol K, et al. Plant leaf disease classification using EfficientNet deep learning model [J]. Ecological Informatics, 2021, 61: 101182.
[20]
Zhang P, Yang L, Li D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural complex environment [J]. Computers and Electronics in Agriculture, 2020, 176: 105652.
[21]
Bao W, Yang X, Liang D, et al. Lightweight convolutional neural network model for field wheat ear disease identification [J]. Computers and Electronics in Agriculture, 2021, 189: 106367.
[22]
Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]. Conference on Computer Vision and Pattern Recognition, 2018: 18-23.
[23]
Harshanand B A, Sangaiah A K. Comprehensive analysis of deep learning methodology in classification of leukocytes and enhancement using swish activation units [J]. Mobile Networks and Applications, 2020, 25(6): 2302-2320.
[24]
Wei L W, Fu S, Ran Z T H, et al. Verifying ReLU neural networks from a model checking perspective [J]. Journal of Computer Science and Technology, 2020, 35(6): 1365-1381.
[25]
Bera S, Shrivastava V K. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification [J]. International Journal of Remote Sensing, 2020, 41: 2664.
[26]
AlWaisy A S, Qahwaji R, Ipson S, et al. A multibiometric iris recognition system based on a deep learning approach [J]. Pattern Analysis and Applications, 2018, 21(3): 783-802.
[27]
Hinton G, Srivastava N, Swersky K. Rmsprop: Divide the gradient by a running average of its recent magnitude [J]. Neural networks for machine learning, Coursera lecture 6e, 2012, 13: 26-30.
[28]
Chen J, Chen J, Zhang D, et al. Using deep transfer learning for imagebased plant disease identification [J]. Computers and Electronics in Agriculture, 2020, 173: 105393.
[29]
黄双萍, 孙超, 齐龙, 等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017, 33(20): 169-176.
Huang Shuangping, Sun Chao, Qi Long. Rice panicle blast identification method based on deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 169-176.
[30]
Cruz A, Ampatzidis Y, Pierro R, et al. Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence [J]. Computers and Electronics in Agriculture, 2019, 157: 63-76.
[31]
Waheed A, Goyal M, Gupta D, et al. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf [J]. Computers and Electronics in Agriculture, 2020, 175: 105456.
|