[1]
黄哲真. 红枣的营养成分及功用价值[J]. 科技视界, 2014(29): 325.
[2]
郝连君, 张庆辉. 冬枣采摘和贮藏技术[J]. 现代农业科技, 2005(11): 18.
[3]
许威广, 穆占海, 刘党辉, 等. 红枣收获中智能设备的应用探索[J]. 湖北农机化, 2020(1): 124-126.
[4]
董子安, 朱成红, 张振阳, 等. 冬枣采摘前的管理与采摘技术[J]. 落叶果树, 2005(6): 19.
[5]
宋寅卯, 赵明珍, 刁智华, 等. 基于Hough变换的机器视觉目标检测技术研究[J]. 中国农机化学报, 2015, 36(4): 225-231.
Song Yinmao, Zhao Mingzhen, Diao Zhihua, et al. Research of technology in machine vision detection based on Hough transform [J]. Journal of Chinese Aagricultural Mechanization, 2015, 36(4): 225-231.
[6]
张磊, 姜军生, 李昕昱, 等. 基于快速卷积神经网络的果园果实检测试验研究[J]. 中国农机化学报, 2020, 41(10): 183-190, 210.
Zhang Lei, Jiang Junsheng, Li Xinyu, et al. Experimental research on orchard fruit detection based on fast convolutional neural network [J]. Journal of Chinese Aagricultural Mechanization, 2020, 41(10): 183-190, 210.
[7]
冯俊惠, 李志伟, 戎有丽, 等. 基于改进Hough圆变换算法的成熟番茄果实识别[J]. 中国农机化学报, 2021, 42(4): 190-196.
Feng Junhui, Li Zhiwei, Rong Youli, et al. Identification of mature tomatoes based on an algorithm of modified circular Hough transform [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 190-196.
[8]
刘坤, 陈锋军. 基于支持向量机的灵武长枣成熟度分级算法[J]. 信息通信, 2016(6): 15-16.
[9]
Yu Lianyi, Xiong Juntao, Fang Xueqing, et al. A litchi fruit recognition method in a natural environment using RGB-D images [J]. Biosystems Engineering, 2021, 204(1): 50-63.
[10]
曹晓峰, 任惠如, 李幸芝, 等. 高光谱技术结合特征波长/光谱指数对冬枣成熟度可视化判别[J]. 光谱学与光谱分析, 2018, 38(7): 2175-2182.
Cao Xiaofeng, Ren Huiru, Li Xingzhi,et al. Discrimination of winter jujubes maturity using hyperspectral technique combined with characteristic wavelength and spectral indices [J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2175-2182.
[11]
成伟, 张文爱, 冯青春, 等. 基于改进YOLOv3的温室番茄果实识别估产方法[J]. 中国农机化学报, 2021, 42(4): 176-182.
Cheng Wei, Zhang Wenai, Feng Qingchun, et al. Method of greenhouse tomato fruit identification and yield estimation based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 176-182.
[12]
刘坤, 陈锋军. 基于BP神经网络的灵武长枣成熟度分级算法[J]. 机械工程与自动化, 2017(2): 29-30.
Liu Kun, Chen Fengjun. Study of Lingwu dates maturity grading method based on BP neural network [J]. Mechanical Engineering & Automation, 2017(2): 29-30.
[13]
Redmon J, Farhadi A. YOLOv3: an incremental improvement [EB/OL]. http://arxiv.org/abs/1804.02767, 2018-04-08.
[14]
Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers & Electronics in Agriculture, 2019, 157: 417-426.
[15]
Bochkovskiy A, Wang C Y, Liao H Y. YOLOv4: Optimal speed and accuracy of object detection [EB/OL]. http://arxiv.org/abs/2004.10934, 2020-04-23.
[16]
Wu Dihua, Lü Shuaichao, Jiang Mei, et al. Using channel pruningbased YOLO v4 deep learning algorithm for the realtime and accurate detection of apple flowers in natural environments [J]. Computers & Electronics in Agriculture, 2020, 178(4): 105742.
[17]
郭继峰, 孙文博, 庞志奇, 等. 一种改进YOLOv4的交通标志识别算法[J]. 小型微型计算机系统, 2022, 43(7): 1471-1476.
Guo Jifeng, Sun Wenbo, Pang Zhiqi,et al. Improved traffic sign recognition algorithm for YOLOv4 [J]. Journal of Chinese Computer Systems, 2022, 43(7): 1471-1476.
[18]
张欣, 张永强, 何斌, 等. 基于YOLOv4-tiny的遥感图像飞机目标检测技术研究[J]. 光学技术, 2021, 47(3): 344-351.
Zhang Xin, Zhang Yongqiang, He Bin, et al. Research on remote sensing image aircraft target detection technology based on YOLOv4-tiny [J]. Optical Technique, 2021, 47(3): 344-351.
[19]
邸洁, 曲建华. 基于Tiny-YOLO的苹果叶部病害检测[J]. 山东师范大学学报(自然科学版), 2020, 35(1): 78-83.
Di Jie, Qu Jianhua. A detection method for apple leaf diseases based on Tiny-YOLO [J]. Journal of Shandong Normal University (Natural Science), 2020, 35(1): 78-83.
[20]
Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv: Computer Vision and Pattern Recognition, 2017.
[21]
张陶宁, 陈恩庆, 肖文福. 一种改进MobileNet_YOLOv3网络的快速目标检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1008-1014.
Zhang Taoning, Chen Enqing, Xiao Wenfu. Fast target detection method for improved MobileNet_YOLOv3 network [J]. Journal of Chinese Computer Systems, 2021, 42(5): 1008-1014.
|