[1]
朱志民, 沈楠. 我国观赏草坪杂草状况及进展[J]. 现代园艺, 2021, 44(8): 129-130.
[2]
Gladkov, Evgeny Aleksandrovich, Gladkova, et al. Ornamental plants adapted to urban ecosystem pollution: Lawn grasses tolerating deicing reagents [J]. Environmental Science and Pollution Research, 2021, 89(11): 255-256.
[3]
樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identificationand localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[4]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[5]
逯杉婷. 机器人草坪杂草识别算法研究[D]. 石家庄: 河北科技大学, 2019.
Lu Shanting. Researchon robot lawn weed recognition algorithm [D]. Shijiazhuang: Hebei University of Science and Technology, 2019.
[6]
权龙哲, 吴冰, 毛首人. 基于Mask R-CNN农田杂草实例分割与叶龄识别方法[J]. 东北农业大学学报, 2021, 52(4): 65-76.
Quan Longzhe, Wu Bing, Mao Shouren. Method for segmentation and leaf age recognition of farmland weeds based on Mask R-CNN [J]. Journal of Northeast Agricultural University, 2021, 52(4): 65-76.
[7]
Lin TsungYi, Goyal Priya, Girshick Ross, et al. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 98-102.
[8]
Amiraz C, Krauthgamer R, Nadler B. Tight recovery guarantees for orthogonal matching pursuit under Gaussian noise [J]. Information and Inference: A Journal of the IMA, 2021, 10(2): 573-595.
[9]
Xu Z, Ji X, Wang M, et al. Edge detection algorithm of medical image based on Canny operator [J]. Journal of Physics: Conference Series, 2021, 1955(1): 012080.
[10]
尤振飞, 赵健, 王小宇, 等. 基于语义分割与连通区域标记的隔离开关状态识别方法[J]. 电力系统自动化, 2021, 45(20): 157-165.
You Zhenfei, Zhao Jian, Wang Xiaoyu, et al. State recognition method for disconnector based on semantic segmentation and connected component labeling [J]. Automation of Electric Power Systems, 2021, 45(20): 157-165.
[11]
Li Y, Chen Y, Wang N, et al. Scaleaware trident networks for object detection [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019.
[12]
Wang Panqu, Chen Pengfei, Yuan Ye, et al. Understanding convolution for semantic segmentation [J]. IEEE Winter Conference on Applications of Computer Vision, 2018, 22(12): 148-151.
[13]
Stergiou A, Poppe R, Kalliatakis G. Refining activation down sampling with SoftPool [J]. Encyclopedia of Measurement and Statistics, 2020, 3: 889-891.
[14]
Malini A, Priyadharshini P, Sabeena S. An automatic assessment of road condition from aerial imagery using modified VGG architecture in fasterRCNN framework [J]. Journal of Intelligent and Fuzzy Systems, 2021(5): 1-12.
[15]
龙海娥. 求解非线性反问题的Nesterov型加速算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[16]
Kingma D, Ba J. Adam: A method for stochastic optimization [J]. 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, 2015.
[17]
Joaquin QuioneroCandela, Dagan I, Magnini B, et al. Machine learning challenges. evaluating predictive uncertainty, visual object classification, and recognising tectual entailment [M]. Springer Berlin Heidelberg, 2006.
[18]
Deng J S, Wang K, Deng Y H, et al. PCA-based landuse change detection and analysis using multitemporal and multisensor satellite data [J]. International Journal of Remote Sensing, 2008, 29(16): 4823-4838.
[19]
管维正. 基于不平衡数据分类算法研究及其应用[D]. 南京: 南京邮电大学, 2021.
Guan Weizheng. Research and application of classification algorithm based on unbalanced data [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021.
|