[ 1 ] 陈攀, 王绍东. 基于轻量级卷积神经网络的多视觉特征图像分割研究[J]. 现代电子技术, 2024, 47(15): 60-64.
Chen Pan, Wang Shaodong. Research on multi‑visual feature image segmentation based on lightweight convolutional neural networks [J]. Modern Electronics Technique, 2024, 47(15): 60-64.
[ 2 ] Jia W, Zhang Y, Lian J, et al. Apple harvesting robot under information technology: A review [J]. International Journal of Advanced Robotic Systems, 2020, 17(3): 1729881420925310.
[ 3 ] 贾新宇, 江朝晖, 李娟, 等. 基于图像测量的毛竹笋高生长在线监测[J]. 林业工程学报, 2021, 6(4): 134-139.
Jia Xinyu, Jiang Chaohui, Li Juan. On‑line monitoring of bamboo shoot growth height based on image measurement [J]. Journal of Forestry Engineering, 2021, 6(4): 134-139.
[ 4 ] Jia W, Mou S, Wang J, et al. Fruit recognition based on pulse coupled neural network and genetic Elman algorithm application in apple harvesting robot [J]. International Journal of Advanced Robotic Systems, 2020, 17(1): 1729881419897473.
[ 5 ] 魏新华, 张敏, 刘青山, 等. 基于双目视觉的田间作物高度和收割边界信息提取[J]. 农业机械学报, 2022, 53(3): 225-233.
Wei Xinhua, Zhang Min, Liu Qingshan, et al. Extraction of crop height and cut‑edge information based on binocular vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 225-233.
[ 6 ] 刘晓洋, 赵德安, 贾伟宽, 等. 基于超像素特征的苹果采摘机器人果实分割方法[J]. 农业机械学报, 2019, 50(11): 15-23.
Liu Xiaoyang, Zhao De'an, Jia Weikuan, et al. Fruits segmentation method based on superpixel features for apple harvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 15-23.
[ 7 ] 张志远, 罗铭毅, 郭树欣, 等. 基于改进YOLOv5的自然环境下樱桃果实识别方法[J]. 农业机械学报, 2022, 53(S1): 232-240.
Zhang Zhiyuan, Luo Mingyi, Guo Shuxin, et al. Cherry fruit detection method in natural scene based on improved YOLOv5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 232-240.
[ 8 ] Zheng Z, Xiong J, Wang X, et al. An efficient online citrus counting system for large‑scale unstructured orchards based on the unmanned aerial vehicle [J]. Journal of Field Robotics, 2023, 40(3): 552-573.
[ 9 ] Palacios F, Bueno G, Salido J, et al. Automated grapevine flower detection and quantification method based on computer vision and deep learning from on‑the‑go imaging using a mobile sensing platform under field conditions [J]. Computers and Electronics in Agriculture, 2020, 178: 105796.
[10] 王鹏飞. 基于深度学习的玉米田间杂草识别技术及应用[D]. 泰安: 山东农业大学, 2019.
[11] 谢培宇. 基于SOLO的玉米叶片病害实例分割方法研究[D]. 合肥: 安徽农业大学, 2022.
Xie Peiyu. Research on example segmentation method of corn leaf disease based on SOLO [J]. Hefei: Anhui Agricultural University, 2022.
[12] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in non‑structural environment based on Mask—RCNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846.
[13] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[14] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|