[ 1 ] 冯汝广, 胡建平, 王梦娇, 等. 智能农机自动驾驶关键技术及应用分析[J]. 农业装备与车辆工程, 2024, 62(7): 15-18.
Feng Ruguang, Hu Jianping, Wang Mengjiao, et al. Key technologies and application analysis of intelligent agricultural machinery autonomous driving [J]. Agricultural Equipment & Vehicle Engineering, 2024, 62(7): 15-18.
[ 2 ] 张彦斐, 封子晗, 张嘉恒, 等. 基于特征融合的果园非结构化道路识别方法[J]. 农业机械学报, 2023, 54(7): 35-44, 67.
Zhang Yanfei, Feng Zihan, Zhang Jiaheng, et al. Recognition method of orchard unstructured road based on feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 35-44, 67.
[ 3 ] 朱俊涛, 刘佳琦, 杨璐. 面向非结构化道路的可行驶区域语义分割[J/OL]. 天津理工大学学报, 1-10[2024-09-14]. http://kns.cnki.net/kcms/detail/12.1374.N.20240430.0925.012.html.
Zhu Juntao, Liu Jiaqi, Yang Lu. Semantic segmentation of drivable region for unstructured roads [J/OL]. Journal of Tianjin University of Technology, 1-10[2024-09-14]. http://kns.cnki.net/kcms/detail/12.1374.N. 20240430. 0925.012.html.
[ 4 ] 武锦龙, 吴虹麒, 李浩, 等. 基于改进DeepLabV3+的荞麦苗期无人机遥感图像分割识别方法研究[J]. 农业机械学报, 2024, 55(5): 186-195.
Wu Jinlong, Wu Hongqi, Li Hao, et al. Segmentation of buckwheat by UAV based on improved lightweight DeepLabV3+ at seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(5): 186-195.
[ 5 ] Hou X, Chen P, Gu H. LM-DeeplabV3+: A lightweight image segmentation algorithm based on multi‑scale feature interaction [J]. Applied Sciences, 2024, 14(4): 1558.
[ 6 ] Xie X, Yan Z, Zhang Z, et al. Construction of three‑dimensional semantic maps of unstructured lawn scenes based on deep learning [J]. Applied Sciences, 2024, 14(11): 4884.
[ 7 ] 张凯航, 冀杰, 蒋骆, 等. 基于SegNet的非结构道路可行驶区域语义分割[J].重庆大学学报, 2020, 43(3): 79-87.
Zhang Kaihang, Ji Jie, Jiang Luo, et al. The semantic segmentation of driving regions on unstructured road based on SegNet architecture [J]. Journal of Chongqing University, 2020, 43(3): 79-87.
[ 8 ] 赵玉刚, 刘文萍, 周焱, 等. 基于注意力机制和改进DeepLabV3+的无人机林区图像地物分割方法[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 93-103.
Zhao Yugang, Liu Wenping, Zhou Yan, et al. UAV forestry land‑cover image segmentation method based on attention mechanism and improved DeepLabV3+ [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(4): 93-103.
[ 9 ] Gao C, Zhao F, Zhang Y, et al. Research on multitask model of object detection and road segmentation in unstructured road scenes [J]. Measurement Science and Technology, 2024, 35(6): 065113.
[10] Sotelo M A, Rodriguez F J, Magdalena L, et al. A color vision‑based lane tracking system for autonomous driving on unmarked roads [J]. Autonomous Robots, 2004, 16(1): 95-116.
[11] 石金进. 基于视觉的智能车辆道路识别与障碍物检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[12] Yang G, Wang Y, Yang J, et al. Fast and robust vanishing point detection using contourlet texture detector for unstructured road [J]. IEEE Access, 2019, 7: 139358-139367.
[13] 王谦, 何朗, 王展青, 等. 基于改进DeepLabv3+的遥感影像道路提取算法[J]. 计算机科学, 2024, 51(8): 168-175.
Wang Qian, He Lang, Wang Zhanqing, et al. Road extraction algorithm for remote sensing images based on improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175.
[14] Tung N X, Son T G. Hyperspectral image classification using an encoder‑decoder model with depthwise separable convolution, squeeze and excitation blocks [J]. Earth Science Informatics, 2024, 17(1): 527-538.
[15] Chen K, Wang H, Zhai Y. A lightweight model for real‑time detection of vehicle black smoke [J]. Sensors, 2023, 23(23): 124-131.
[16] 杨萍, 张汐. 改进DeepLabv3+的道路表面裂缝检测方法[J/OL]. 计算机工程, 1-10[2024-09-14]. https://doi.org/10.19678/j.issn.1000-3428.0069114.
Yang Ping, Zhang Xi. Improved DeepLabv3+ road surface crack detection method [J/OL]. Computer Engineering, 1-10[2024-09-14]. https://doi.org/10. 19678/j.issn.1000-3428.0069114.
[17] He C, Liu Y, Wang D, et al. Automatic extraction of bare soil land from high‑resolution remote sensing images based on semantic segmentation with deep learning [J]. Remote Sensing, 2023, 15(6): 1646.
[18] Chen Z, Chen J, Yue Y, et al. Tradeoffs among multi‑source remote sensing images, spatial resolution, and accuracy for the classification of wetland plant species and surface objects based on the MRS_DeepLabV3+ model [J]. Ecological Informatics, 2024, 81: 102594.
[19] 郝夏楠, 庞亚军, 麻月欣, 等. 基于MobileNetV3网络的轻量级激光雷达点云图像语义分割[J/OL]. 激光杂志, 1-9[2024-09-14]. http://kns.cnki.net/kcms/detail/50.1085.TN.20240619.1515.002.html.
Hao Xiannan, Pang Yajun, Ma Yuexin, et al. Semantic segmentation of lightweight LiDAR point cloud images based on MobileNetV3 network [J/OL]. Laser Journal, 1-9[2024-09-14]. http://kns.cnki.net/kcms/detail/50.1085.TN.20240619.1515.002.html.
[20] Yin Y, Guo Y, Deng L, et al. Improved PSPNet‑based water shoreline detection in complex inland river scenarios [J]. Complex & Intelligent Systems, 2023, 9(1): 233-245.
[21] Islam M S, Ibrahim A M, Hoque K E, et al. Advancement in the automation of paved roadways performance patrolling: A review [J]. Measurement, 2024: 114734.
[22] Saeedizadeh N, Jalali S M J, Khan B, et al. A new optimization approach based on neural architecture search to enhance deep U—Net for efficient road segmentation [J]. Knowledge-Based Systems, 2024, 296: 111966.
|