[1] 梅宇, 张朔. 2022年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2023, 45(4): 25-30.
Mei Yu, Zhang Shuo. Analysis of Chinas tea production and domestic sales in 2022[J]. China Tea, 2023, 45(4): 25-30.
[2] 方坤礼, 廖建平, 刘晓辉. 基于改进JSEG技术的茶叶图像嫩芽分割与识别研究[J]. 食品工业, 2017, 38(4): 134-138.
Fang Kunli, Liao Jianping, Liu Xiaohui. Research on tea leaf of image segmentation and recognition using improved JSEG algorithm [J]. The Food Industry, 2017, 38(4): 134-138.
[3] 陈妙婷. 基于计算机视觉的名优茶嫩芽识别与定位[D]. 青岛: 青岛科技大学, 2019.Chen Miaoting. Recognition and location of highquality tea buds based on computer vision [D]. Qingdao: Qingdao University of Science & Technology, 2019.
[4] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41, 45.
Long Zhang, Jiang Qian, Wang Jian, et al. Research on method of tea flushes vision recognition and picking point localization [J]. Transducer and Microsystem Technologies, 2022, 41(2): 39-41, 45.
[5] Xu W, Zhao L, Li J, et al. Detection and classification of tea buds based on deep learning [J]. Computers and Electronics in Agriculture, 2022, 192: 106547.
[6] 许高建, 张蕴, 赖小燚. 基于Faster RCNN深度网络的茶叶嫩芽图像识别方法[J]. 光电子·激光, 2020, 31(11): 1131-1139.
Xu Gaojian, Zhang Yun, Lai Xiaoyi. Recognition approaches of tea bud image based on faster RCNN depth network [J]. Journal of Optoelectronics·Laser, 2020, 31(11): 1131-1139.
[7] Yang H, Chen L, Chen M, et al. Tender tea shoots recognition and positioning for picking robot using improved YOLOv3 model [J]. IEEE Access, 2019, 7: 180998-181011.
[8] Chen Y T, Chen S F. Localizing plucking points of tea leaves using deep convolutional neural networks [J]. Computers and Electronics in Agriculture, 2020, 171: 105298.
[9] Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks [C]. International Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 4510-4520.
[10] Yu F, Koltun V, Funkhouser T. Dilated residual networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 472-480.
[11] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[12] Chen L C, Zhu Y, Papandreou G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision, 2018: 801-818.
[13] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]. International Conference on Computer Vision and Pattern Recognition, IEEE, 2015: 3431-3440.
[14] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network [C]. International Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2881-2890.
(上接第181页)
[15] 俞肇元, 袁林旺, 谢志仁, 等. 基于时间序列分解的海面变化预测[J]. 南京师大学报(自然科学版), 2007(1): 117-121.
Yu Zhaoyuan, Yuan Linwang, Xie Zhiren, et al. Sea level prediction based on time series model [j]. Journal of Nanjing Normal University (Natural Science Edition), 2007(1): 117-121.
[16] 肖白, 肖志峰, 姜卓, 等. 基于降噪自编码器、奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知[J]. 中国电机工程学报, 2021, 41(14): 4858-4867.
Xiao Bai, Xiao Zhifeng, Jiang Zhuo, et al. Spatial load situation awareness based on denoising autoencoder, singular spectrum analysis and long shortterm memory neural networks [J]. Proceedings of the CSEE, 2021, 41(14): 4858-4867.
[17] 李丽敏, 张明岳, 温宗周, 等. 基于奇异谱分析法和长短时记忆网络组合模型的滑坡位移预测[J]. 信息与控制, 2021, 50(4): 459-469.
Li Limin, Zhang Mingyue, Wen Zongzhou, et al. Landslide displacement prediction based on singular spectrum analysis and a combined long shortterm memory neural network model [J]. Information and Control, 2021, 50(4): 459-469.
[18] 付莲莲, 罗千峰. 生猪价格波动特征及形成机理的异质性——基于MK检验和协方差分析[J]. 中国农业大学学报, 2018, 23(11): 196-205.
Fu Lianlian, Luo Qianfeng. Heterogeneity of the characteristics and formation mechanism of hog prices volatility: Based on MK test and covariance analysis [J]. Journal of China Agricultural University, 2018, 23(11): 196-205.
[19] 雷可为, 陈瑛. 基于BP神经网络和ARIMA组合模型的中国入境游客量预测[J]. 旅游学刊, 2007(4): 20-25.
Lei Kewei, Chen Ying. Forecast of inbound tourists to China based on BP neural network and ARIMA combined model [J]. Tourism Tribune, 2007(4): 20-25.
|