[1] 吴炅, 蒋馥根, 彭邵锋, 等. 结合树冠体积的油茶树高与产量估测研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 53-62.
Wu Jiong, Jiang Fugen, Peng Shaofeng, et al. Estimating the tree height and yield of Camellia oleifera by combining crown volume [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(2): 53-62.
[2] 魏立群. 基于Kinect传感器自主标定的果树冠层三维形态测量方法研究[D]. 南京: 南京农业大学, 2019.Wei Liqun. Selfcalibration of a 3D morphological measurement method for a fruit tree canopy based on Kinect sensor [D]. Nanjing: Nanjing Agricultural University, 2019.
[3] 刘芳, 冯仲科, 杨立岩, 等. 基于三维激光点云数据的树冠体积估算研究[J]. 农业机械学报, 2016, 47(3): 328-334.
Liu Fang, Feng Zhongke, Yang Liyan, et al. Estimation of tree crown volume based on 3D laser point clouds data [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 328-334.
[4] 哈努拉·塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50.
Hanula Tasiken, Cai Huiying, Jin Guangze. Effects of canopy structure on productivity in a typical mixed broadleavedKorean pine forest [J]. Chinese Journal of Plant Ecology, 2021, 45(1): 38-50.
[5] 牛萌萌, 方会敏, 康建明, 等. 果园施药关键技术研究进展[J]. 中国农机化学报, 2021, 42(3): 48-59, 158.
Niu Mengmeng, Fang Huimin, Kang Jianming, et al. Research progress on key technology of orchard spraying [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 48-59, 158.
[6] 陈海啸, 陆声链, 徐践. 果树冠层形态特征测量与分析研究进展[J]. 中国农业科技导报, 2016, 18(6): 97-102.
Chen Haixiao, Lu Shenglian, Xu Jian. Studies research progress on fruit tree canopy shape characteristics measurement and analysis [J]. Journal of Agricultural Science and Technology, 2016, 18(6): 97-102.
[7] 丁为民, 赵思琪, 赵三琴, 等. 基于机器视觉的果树树冠体积测量方法研究[J]. 农业机械学报, 2016, 47(6): 1-10, 20.
Ding Weimin, Zhao Siqi, Zhao Sanqin, et al. Measurement methods of fruit tree canopy volume based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 1-10, 20.
[8] 王辉, 韩娜娜, 吕程序, 等. 基于Mask RCNN的单株柑橘树冠识别与分割[J]. 农业机械学报, 2021, 52(5): 169-174.
Wang Hui, Han Nana, Lü Chengxu, et al. Recognition and segmentation of individual citrus tree crown based on Mask RCNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 169-174.
[9] Gimenez J, Herrera D, Tosetti S, et al. Optimization methodology to fruit grove mapping in precision agriculture [J]. Computers and Electronics in Agriculture, 2015, 116: 88-100.
[10] Ahongshangbam J, Khokthong W, Ellser F, et al. Dronebased photogrammetryderived crown metrics for predicting tree and oil palm water use [J]. Ecohydrology, 2019, 12(6): 1-18.
[11] 李鹏, 张明, 戴祥生, 等. 基于不规则三棱柱分割法实时测算果树冠层体积[J]. 中国农业科学, 2019, 52(24): 4493-4504.
Li Peng, Zhang Ming, Dai Xiangsheng, et al. Realtime estimation of citrus canopy volume based on laser scanner and irregular triangular prism module method [J]. Scientia Agricultura Sinica, 2019, 52(24): 4493-4504.
[12] 樊仲谋, 冯仲科, 郑君, 等. 基于立方体格网法的树冠体积计算与预估模型建立[J]. 农业机械学报, 2015, 46(3): 320-327.
Fan Zhongmou, Feng Zhongke, Zheng Jun, et al. Tree crown volume calculation and prediction model establishment using cubic lattice method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 320-327.
[13] 林松, 田林亚, 毕继鑫, 等. 三维激光扫描数据的单木树冠体积精确计算[J]. 测绘科学, 2020, 45(8): 115-122.
Lin Song, Tian Linya, Bi Jixin, et al. Accurate calculation of singletree crown volume based on 3D laser scanning data [J]. Science of Surveying and Mapping, 2020, 45(8): 115-122.
[14] 董亚涵, 李永强, 李鹏鹏, 等. 基于改进凸包算法的树冠轮廓点提取与体积计算[J]. 测绘工程, 2018, 27(8): 66-71.
Dong Yahan, Li Yongqiang, Li Pengpeng, et al. Tree crown outline points extracting and volume calculation based on improved convex hull algorithm [J]. Engineering of Surveying and Mapping, 2018, 27(8): 66-71.
[15] 杨洲, 李洋, 段洁利, 等. 基于毫米波雷达的果园单木冠层信息提取[J]. 农业工程学报, 2021, 37(21): 173-182.
Yang Zhou, Li Yang, Duan Jieli, et al.Extraction of the crown information of single tree in orchard based on millimeter wave radar [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 173-182.
[16] 张先洁, 孙国祥, 汪小旵, 等. 基于超像素特征向量的果树冠层分割方法[J]. 江苏农业学报, 2021, 37(3):724-730.
Zhang Xianjie, Sun Guoxiang, Wang Xiaochan, et al. Segmentation method of fruit tree canopy based on super pixel feature vector [J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3): 724-730.
[17] 李秋洁, 丁旭东, 邓贤. 基于激光雷达的果园行间路径提取与导航[J]. 农业机械学报, 2020, 51(S2): 344-350.
Li Qiujie, Ding Xudong, Deng Xian. Intrarow Path Extraction and Navigation for Orchards Based on LiDAR [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 344-350.
[18] Hadas E, Jozkow G, Walicka A, et al. Apple orchard inventory with a LiDAR equipped unmanned aerial system [J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101911.
[19] Bargoti S, Underwood J P, Nieto J I, et al. A pipeline for trunk detection in trellis structured apple orchards [J]. Journal of Field Robotics, 2015, 32(8): 1075-1094.
[20] 周三章. 基于三维点云的农林作物三维重建方法与特征提取研究[D]. 北京: 北京林业大学, 2020.Zhou Sanzhang. Research on 3D reconstruction method and feature extraction of agricultural and forestry crops based on 3D point cloud [D]. Beijing: Beijing Forestry University, 2020.
[21] Zhou S, Kang F, Li W, et al. Extracting diameter at breast height with a handheld mobile LiDAR system in an outdoor environment [J]. Sensors, 2019, 19(14): 3212.
[22] 孙喜亮, 关宏灿, 苏艳军, 等. 面向高精度城市测绘的激光紧耦合SLAM方法[J]. 测绘学报, 2021, 50(11): 1585-1593.
Sun Xiliang, Guan Hongcan, Su Yanjun, et al. A tightly coupled SLAM method for precise urban mapping [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1585-1593.
[23] 周志全. 基于IMU与激光雷达紧耦合的SLAM方法研究[D]. 桂林: 桂林电子科技大学, 2021.Zhou Zhiquan. Research on SLAM method based on tight coupling of IMU and LiDAR [D]. Guilin: Guilin University of Electronic Technology, 2021.
[24] 蔡英凤, 陆子恒, 李祎承, 等. 基于多传感器融合的紧耦合SLAM系统[J]. 汽车工程, 2022, 44(3): 350-361.
Cai Yingfeng, Lu Ziheng, Li Yicheng, et al. Tightly coupled SLAM system based on multisensor fusion [J]. Automotive Engineering, 2022, 44(3): 350-361.
[25] 刘伟洪, 何雄奎, 刘亚佳, 等. 果园行间3D LiDAR导航方法[J]. 农业工程学报, 2021, 37(9): 165-174.
Liu Weihong, He Xiongkui, Liu Yajia, et al. Navigation method between rows for orchard based on 3D LiDAR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 165-174.
[26] 张昌赛, 刘正军, 杨树文, 等. 基于LiDAR数据的布料模拟滤波算法的适用性分析[J]. 激光技术, 2018, 42(3): 410-416.
Zhang Changsai, Liu Zhengjun, Yang Shuwen, et al. Applicability analysis of cloth simulation filtering algorithm based on LiDAR data [J]. Laser Technology, 2018, 42(3): 410-416.
[27] 宗长富, 文龙, 何磊. 基于欧几里得聚类算法的三维激光雷达障碍物检测技术[J]. 吉林大学学报(工学版), 2020, 50(1): 107-113.
Zong Changfu, Wen Long, He Lei. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J].Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 107-113.
[28] 付苗苗, 邓淼磊, 张德贤. 深度神经网络图像目标检测算法综述[J]. 计算机系统应用, 2022, 31(7): 35-45.
Fu Miaomiao, Deng Miaolei, Zhang Dexian. Survey on deep neural network image target detection algorithms [J]. Computer Systems and Applications, 2022, 31(7): 35-45.
[29] 牛力杰, 丛润民, 倪敏, 等. 基于卷积-递归神经网络和费舍尔向量的RGBD物体识别[J]. 南开大学学报(自然科学版), 2021, 54(2): 63-68.
Niu Lijie, Cong Runmin, Ni Min, et al. Object recognition for RGBD images based on convolutionalrecursive neural network and fisher vector [J]. Journal of Nankai University (Natural Science Edition), 2021, 54(2): 63-68.
[30] 包倪雯, 张水花, 莫晓勇. 乔木树种树冠结构研究综述[J]. 桉树科技, 2021, 38(1): 68-74.
Bao Niwen, Zhang Shuihua, Mo Xiaoyong. Overview of tree crown structure [J]. Eucalyptus Science and Technology, 2021, 38(1): 68-74.
|