[1] 李远华. 我国茶产业发展的思考[J]. 武夷学院学报, 2017(7): 27-32.
Li Yuanhua. Consideration for the development of tea industry [J]. Journal of Wuyi University, 2017(7): 27-32.
[2] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. http://www.stats.gov.cn/sj/zxfb/202302/t20230228_1919011.html, 2023-02-28.
[3] 杨劲松. 名优茶鲜叶采摘技术[J]. 云南农业, 2021(9): 56-59.
[4] 李体喜. 名优茶采摘技术[J]. 农民致富之友, 2018, (21): 37.
[5] 王升. 便携式电动采茶机关键部件设计与试验研究[D]. 镇江: 江苏大学, 2018.〖JP2〗Sheng Wang. Research design and experimental study on portable electric tea plucking machine [D]. Zhenjiang: Jiangsu University, 2018.〖JP〗
[6] 韩余, 肖宏儒, 秦广明, 等. 国内外采茶机械发展状况研究[J]. 中国农机化学报, 2014, 35(2): 20-24.
Han Yu, Xiao Hongru, Qin Guangming, et al. Studies on develop situations of tealeaf picker both at home and abroad [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(2): 20-24.
[7] 权启爱. 采茶机械的研制和我国采茶机械化事业的发展[J].中国茶叶, 2018, 40(8): 14-17.
[8] 权启爱. 采茶机械的研制和我国采茶机械化事业的发展(续)[J]. 中国茶叶, 2018, 40(9): 8-12.
[9] 王文明, 肖宏儒, 宋志禹, 等. 茶叶生产全程机械化技术研究现状与展望[J]. 中国农机化学报, 2020, 41(5): 226-236.
Wang Weiming, Xiao Hongru, Song Zhiyu, et al. Research status and prospects of tea production mechanization technology [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 226-236.
[10] 赵博杰. 基于机器视觉的茶叶嫩芽识别关键技术研究[D]. 鞍山: 辽宁科技大学, 2020.Zhao Bojie. Tea bud segmentation and recognition based on machine vision [D]. Anshan: University of Science and Technology Liaoning, 2020.
[11] 易文裕, 程方平, 邱云桥, 等. 单人采茶机研究现状与发展趋势[J]. 中国农机化学报, 2020, 41(11): 33-38.
Yi Wenyu, Cheng Fangping, Qiu Yunqiao, et al. Research status and development trend of single teapicking machine [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 33-38.
[12] 张冬生. 基于阈值的图像分割算法研究[D]. 大庆: 东北石油大学, 2011.〖JP2〗Zhang Dongsheng. The study of image segmentation algorithm based on the threshold [D]. Daqing: Northeast Petroleum University, 2011.〖JP〗
[13] 黄旭, 张世义, 李军. 图像分割技术研究综述[J]. 装备机械, 2021, (2): 6-9.
[14] 刘硕. 阈值分割技术发展现状综述[J]. 科技创新与应用, 2020(24): 129-130.
[15] 汪洋, 胡靖, 邵煜坤, 等. 茶叶嫩芽图像自动分割方法的研究[J]. 黄山学院学报, 2015, 17(3): 14-16.
Wang Yang, Hu Jing, Shao Yukun, et al. A study on the methods of image segmentation for tea leaf sprouts [J]. Journal of Huangshan University, 2015, 17(3): 14-16.
[16] 周礼赞, 方梦瑞, 吕军. 低对比度茶叶嫩芽图像自动分割方法的研究[J]. 蚕桑茶叶通讯, 2019(2): 22-25.
[17] 姜苗苗, 问美倩, 杨芷羽, 等. 基于MRFO的茶叶嫩芽图像分割方法[J]. 农业装备与车辆工程, 2021, 59(5): 29-32.
Jiang Miaomiao, Wen Meiqian, Yang Zhiyu, et al. Tea sprout image segmentation method based on MRFO [J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(5): 29-32.
[18] 侯红英, 高甜, 李桃. 图像分割方法综述[J]. 电脑知识与技术, 2019, 15(5): 176-177.
[19] 邵明. 基于计算机视觉的龙井茶叶嫩芽识别方法研究[D]. 杭州: 中国计量学院, 2013.Shao Ming. Research on computer vision based recognition methods of Longjing tea sprouts [D]. Hangzhou: China Jiliang University, 2013.
[20] 黄海军, 吴明晖, 王先伟, 等. 基于改进分水岭算法的茶叶嫩叶图像识别[J]. 贵州农业科学, 2018, 46(4): 136-138.
Huang Haijun, Wu Minghui, Wang Xianwei, et al. Image recognition of tender leaves based on improved watershed algorithm in tea [J]. Guizhou Agricultural Sciences, 2018, 46(4): 136-138.
[21] Zhang L, Zou L, Wu C Y, et al. Method of famous tea sprout identification and segmentation based on improved watershed algorithm [J]. Computers and Electronics in Agriculture, 2021, 184: 106-108.
[22] 方坤礼, 廖建平, 刘晓辉. 基于改进JSEG技术的茶叶图像嫩芽分割与识别研究[J]. 食品工业, 2017, 38(4): 134-138.Fang Kunli, Liao Jianping, Liu Xiaohui. Research on tea leaf of image segmentation and recognition using improved JSEG algorithm [J]. The Food Industry, 2017, 38(4): 134-138.
[23] 郑晓霞, 曹建芳, 赵青杉. 聚类算法在图像分割中的应用[J]. 忻州师范学院学报, 2021, 37(2): 24-27.
Zheng Xiaoxia, Cao Jianfang, Zhao Qingshan. Application of clustering algorithm in image segmentation [J]. Journal of Xinzhou Teachers University, 2021, 37(2): 24-27.
[24] 吴雪梅, 唐仙, 张富贵, 等. 基于Kmeans聚类法的茶叶嫩芽识别研究[J]. 中国农机化学报, 2015, 36(5): 161-164, 179.
Wu Xuemei, Tang Xian, Zhang Fugui, et al. Tea buds image identification based on lab color model and Kmeans clustering [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 161-164, 179.
[25] 张可, 吕军. 自然条件下茶叶嫩芽图像分割方法的研究[J]. 黑龙江八一农垦大学学报, 2016, 28(2): 100-104.
Zhang Ke, Lü Jun. Study on automatic segmentation of tea sprouts under natural conditions [J]. Journal of Heilongjiang Bayi Agricultural University, 2016, 28(2): 100-104.
[26] 黄涛, 方梦瑞, 夏华鵾, 等. 基于清晰度的茶叶嫩芽聚类分割方法[J]. 湖北农业科学, 2020, 59(8): 154-157.
Huang Tao, Fang Mengrui, Xia Huakun, et al. Method of clustering segmentation for tea sprouts based on sharpness function [J]. Hubei Agricultural Sciences, 2020, 59(8): 154-157.
[27] 夏华鹍, 方梦瑞, 黄涛, 等. 基于SLIC超像素的茶叶嫩芽图像分割方法研究[J]. 西昌学院学报(自然科学版), 2019, 33(4): 75-77, 124.
Xia Huakun, Fang Mengrui, Huang Tao, et al. Study on the method of image segmentation of tea sprouts based on SLIC superpixel [J]. Journal of Xichang University(Natural Science Edition), 2019, 33(4): 75-77, 124.
[28] 侯叶. 基于图论的图像分割技术研究[D]. 西安: 西安电子科技大学, 2011.
Hou Ye. Research on graph theory based image segmentation [D]. Xian: Xidian University, 2011.
[29] 毛腾跃, 张雯娟, 帖军. 基于显著性检测和Grabcut算法的茶叶嫩芽图像分割[J]. 中南民族大学学报(自然科学版), 2021, 40(1): 80-88.
Mao Tengyue, Zhang Wenjuan, Tie Jun. Image segmentation of tea buds based on salient object detection and Grabcut [J]. Journal of SouthCentral University for Nationalities(Natural Science Edition), 2021, 40(1): 80-88.
[30] 王文明, 肖宏儒, 陈巧敏, 等.基于图像处理的茶叶智能识别与检测技术研究进展分析[J]. 中国农机化学报, 2020, 41(7): 178-184.
Wang Weiming, Xiao Hongru, Chen Qiaoming, et al. Research progress analysis of tea intelligent recognition and detection technology based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 178-184.
[31] Ross B Girshick, Jeff Donahue, Trevor Darrell, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[32] 方梦瑞, 夏华鵾, 周礼赞, 等. 基于GoogLeNet的茶叶嫩芽生长状态智能识别[J]. 黄山学院学报, 2019, 21(5): 17-21.Fang Mengrui, Xia Huakun, Zhou Lizan, et al. Intelligent identification of tea buds growth state based on GoogLeNet [J]. Journal of Huangshan University, 2019, 21(5): 17-21.
[33] 吕军, 夏华鹍, 方梦瑞, 等. 基于AlexNet的茶叶嫩芽状态智能识别研究[J]. 黑龙江八一农垦大学学报, 2019, 31(2): 72-78.
Lü Jun, Xia Huakun, Fang Mengrui, et al. Research on intelligent identification of tea sprouts state based on AlexNet [J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(2): 72-78.
[34] 许高建, 张蕴, 赖小燚. 基于Faster RCNN深度网络的茶叶嫩芽图像识别方法[J]. 光电子·激光, 2020, 31(11): 1131-1139.
Xu Gaojian, Zhang Yun, Lai Xiaoyi. Recognition approaches of tea bud image based on faster RCNN depth network [J]. Journal of Optoelectronics Laser, 2020, 31(11): 1131-1139.
[35] 罗浩伦, 冯泽霖, 冉钟南, 等. 基于VGG16网络的茶叶嫩芽自动检测研究[J]. 农业与技术, 2020, 40(1): 15-17.
[36] 朱红春, 李旭, 孟炀, 等. 基于Faster RCNN网络的茶叶嫩芽检测[J]. 农业机械学报, 2022, 53(5): 217-224.
Zhu Hongchun, Li Xu, Meng Yang, et al. Tea bud detection based on Faster RCNN network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 217-224.
[37] 施莹莹, 李祥瑞, 孙凡. 基于YOLOv3的自然环境下茶叶嫩芽目标检测方法研究[J]. 电脑知识与技术, 2021, 17(3): 14-16.
[38] Yang H L, Chen L, Chen M T, et al. Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model [J]. IEEE Access, 2019, 7.
[39] 白雪. 基于计算机视觉的名优茶嫩芽识别与定位[J]. 数码世界, 2020(2): 42.
|