[1] 李保明, 王阳, 郑炜超, 等. 畜禽养殖智能装备与信息化技术研究进展[J]. 华南农业大学学报, 2021, 42(6): 18-26.
Li Baoming, Wang Yang, Zheng Weichao, et al. Research progress on intelligent equipment and information technology for livestock and poultry breeding [J]. Journal of South China Agricultural University, 2021, 42(6): 18-26.
[2] 龙长江, 谭鹤群, 朱明, 等. 畜禽舍移动式智能监测平台研制[J]. 农业工程学报, 2021, 37(7): 68-75.
Long Changjiang, Tan Hequn, Zhu Ming, et al. Development of mobile intelligent monitoring platform for livestock and poultry house [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 68-75.
[3] Kristensen H H, Cornou C. Automatic detection of deviations in activity levels in groups of broiler chickens: A pilot study [J]. Biosystems Engineering, 2011, 109(4): 369-376.
[4] 李保明, 王阳, 郑炜超, 等. 中国规模化养鸡环境控制关键技术与设施设备研究进展[J]. 农业工程学报, 2020, 36(16): 212-221.
Li Baoming, Wang Yang, Zheng Weichao, et al.Research progress in environmental control key technologies, facilities and equipment for laying hen production in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 212-221.
[5] 李保明, 王阳, 郑炜超. 我国规模化养鸡环境控制技术的最新进展[J]. 中国家禽, 2019, 41(9): 1-7.
Li Baoming, Wang Yang, Zheng Weichao.Advances in environment control technology of poultry in China [J]. China Poultry, 2019, 41(9): 1-7.
[6] Hla B, Cla B, Gla B, et al. A realtime table grape detection method based on improved YOLOv4tiny network in complex background [J]. Biosystems Engineering, 2021, 212(6): 347-359.
[7] Ahamed T. Real time pear fruit detection and counting using YOLOv4 models and deep sort [J]. Sensors, 2021, 21(14): 4803.
[8] 东辉, 陈鑫凯, 孙浩, 等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测[J]. 图学学报, 2022, 43(4): 559-569.
Dong Hui, Chen Xinkai, Sun Hao, et al. Weed detection in vegetable field based on improved YOLOv4 and image processing [J]. Journal of Graphology, 2022, 43(4): 559-569.
[9] Li D, Zhang K F, Li Z B, et al. A spatiotemporal convolutional network for multibehavior recognition of pigs [J]. Sensors, 2020, 20(8): 2381.
[10] 任晓惠, 刘刚, 张淼, 等. 基于支持向量机分类模型的奶牛行为识别方法[J]. 农业机械学报, 2019, 50(S1): 290-296.
Ren Xiaohui, Liu Gang, Zhang Miao, et al.Dairy cattles behavior recognition method based on support vector machine classification model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 290-296.
[11] Lao F, BrownBrandl T, Stinn J P, et al. Automatic recognition of lactating sow behaviors through depth image processing [J]. Computers and Electronics in Agriculture, 2016, 125: 56-62.
[12] 杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238.
Yang Qiumei, Xiao Deqin, Zhang Genxing.Automatic pig drinking behavior recognition with machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 232-238.
[13] Sa J, Choi Y, Lee H, et al. Fast pig detection with a topview camera under various illumination conditions [J]. Symmetry, 2019, 11(2): 266.
[14] 余秋冬, 杨明, 袁红, 等. 基于轻量化YOLOv4的生猪目标检测算法[J]. 中国农业大学学报, 2022, 27(1): 183-192.
Yu Qiudong, Yang Ming, Yuan Hong, et al. Pig object detection algorithm based on lightweight YOLOv4 [J]. Journal of China Agricultural University, 2022, 27(1): 183-192.
[15] 劳凤丹, 杜晓冬, 滕光辉. 基于深度图像的蛋鸡行为识别方法[J]. 农业机械学报, 2017, 48(1): 155-162.
Lao Fengdan, Du Xiaodong, Teng Guanghui.Automatic recognition method of laying hen behaviors based on depth image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 155-162.
[16] 劳凤丹, 滕光辉, 李军, 等. 机器视觉识别单只蛋鸡行为的方法[J]. 农业工程学报, 2012, 28(24): 157-163.
Lao Fengdan, Teng Guanghui, Li Jun, et al.Behavior recognition method for individual laying hen based on computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 157-163.
[17] 赵守耀, 陆辉山, 王福杰, 等. 基于轮廓特征的单只蛋鸡行为识别方法[J]. 中国农机化学报, 2022, 43(2): 143-147, 181.
Zhao Shouyao, Lu Huishan, Wang Fujie, et al. Recognition method of single layer behavior based on contour feature [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 143-147, 181.
[18] 李娜, 任昊宇, 任振辉. 基于深度学习的群养鸡只行为监测方法研究[J]. 河北农业大学学报, 2021, 44(2): 117-121.Li Na, Ren Haoyu, Ren Zhenhui. Research of behavior monitoring method of flock hens based on deep learning [J]. Journal of Hebei Agricultural University, 2021, 44(2): 117-121.
[19] 瞿子淇. 无人养鸡场死鸡检测方法研究[D]. 长春: 吉林大学, 2019.Qu Ziqi.Study on detection method of dead chicken in unmanned chicken farm [D]. Changchun: Jilin University, 2019.
[20] 胡子康. 死鸡捡拾机器人欠驱动末端执行器的研究[D]. 保定: 河北农业大学, 2021.Hu Zikang. Research on underactuated endeffector of dead chicken picking robot [D]. Baoding: Hebei Agricultural University, 2021.
[21] Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3 [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020.
[22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]. 2017 Advances in Neural Information Processing Systems. NIPS, 2017.
|