[ 1 ] 顾理琴. 基于图像识别技术的食品种类检测方法[J]. 食品研究与开发, 2017, 38(2): 186-189.
Gu Liqin. Image recognition technology of the food species detection method [J]. Food Research and Development, 2017, 38(2): 186-189.
[ 2 ] 姚仁朋, 孙玉敬, 赵圆, 等. 机器学习在食品工业中的应用[J]. 中国食品学报, 2024, 24(1): 349-363.
Yao Renpeng, Sun Yujing, Zhao Yuan, et al. Applications of machine learning in the food industry [J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(1): 349-363.
[ 3 ] Chen X, Zhu Y, Zhou H, et al. ChineseFoodNet: A large‑scale image dataset for Chinese food recognition [J]. arXiv preprint arXiv: 1705.02743, 2017.
[ 4 ] Mcallister P, Zheng H, Bond R, et al. Combining deep residual network features with supervised machine learning algorithms to classify diverse food image datasets [J]. Computers in Biology and Medicine, 2018, 95: 217-233.
[ 5 ] Shen Z, Shehzad A, Chen S, et al. Machine learning based approach on food recognition and nutrition estimation [J]. Procedia Computer Science, 2020, 174: 448-453.
[ 6 ] Ma P, Lau C P, Yu N, et al. Image‑based nutrient estimation for Chinese dishes using deep learning [J]. Food Research International, 2021(8): 110437.
[ 7 ] Vijayakumari G, Vutkur P, Vishwanath P. Food classification using transfer learning technique[J]. Global Transitions Proceedings, 2022, 3(1): 225-229.
[ 8 ] Chen J, Ngo C. Deep‑based ingredient recognition for cooking recipe retrieval [C]. Proceedings of the 24th ACM International Conference on Multimedia, 2016: 32-41.
[ 9 ] Simon M, Barbara K S. NutriNet: A deep learning food and drink image recognition system for dietary assessment [J]. Nutrients, 2017, 9(7): 657.
[10] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269.
[11] 陈海燕, 甄霞军, 赵涛涛. 一种自适应图像融合数据增强的高原鼠兔目标检测方法[J]. 农业工程学报, 2022, 38(S1): 170-175.
Chen Haiyan, Zhen Xiajun, Zhao Taotao. Adaptive image fusion data augmentation method for ochotona curzoniae object detection [J]. Transactions of Chinese Society of Agricultural Engineering, 2022, 38(S1): 170-175.
[12] Hu J, Shen L, Sun J, et al. Squeeze‑and‑excitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[13] Szegedy C, Wei L, Jia Y, et al. Going deeper with convolutions [C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015: 1-9.
[14] Liu S, Deng W. Very deep convolutional neural network based image classification using small training sample size [C]. 2015 3rd IAPR Asian Conference on Pattern Recognition. IEEE, 2016: 730-734.
[15] He K, Zhang X, Ren S, et al. Deep residual learning for Fimage recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[16] 彭红星, 徐慧明, 高宗梅, 等. 基于改进YOLOF模型的田间农作物害虫检测方法[J]. 农业机械学报, 2023, 54(4): 285-294, 303.
Peng Hongxing, Xu Huiming, Gao Zongmei, et al. Insect pest detection of field crops based on improved YOLOF model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(4): 285-294, 303.
[17] 张美志, 张宁, 乔聪, 等. 基于IPLS—XGBoost算法的可见—近红外光谱鸡蛋新鲜度高效准确检测技术研究[J]. 光谱学与光谱分析, 2023, 43(6): 1711-1718.
Zhang Meizhi, Zhang Ning, Qiao Cong, et al. High‑efficient and accurate testing of egg freshness based on IPLS—XGBoost algorithm and VIS—NIR spectrum [J]. Spectroscopy and Spectral Analysis, 2023, 43(6): 1711-1718.
[18] 李平, 马玉琨, 李艳翠, 等. 基于迁移学习的小麦籽粒品种识别研究[J]. 中国农机化学报, 2023, 44(7): 220-228, 280.
Li Ping, Ma Yukun, Li Yancui, et al. Study on wheat seed variety identification based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 220-228, 280.
[19] 石泽男, 陈海鹏, 张冬, 等. 预训练驱动的多模态边界感知视觉Transformer[J]. 软件学报, 2023, 34(5): 2051-2067.
Shi Zenan, Chen Haipeng, Zhang Dong, et al. Pre‑training‑driven multimodal boundary‑aware vision Transformer [J]. Journal of Software, 2023, 34(5): 2051-2067.
[20] 邵霆啸, 孟海涛, 赵博文. 一种改进残差网络的农田识别算法[J]. 软件导刊, 2023, 22(5): 72-77.
Shao Tingxiao, Meng Haitao, Zhao Bowen. A farmland recognition algorithm based on improved residual network [J]. Software Guide, 2023, 22(5): 72-77.
[21] 徐宇淼, 徐文静, 胡清洁. 求解L1正则化L2损失支持向量机问题的多层随机坐标下降算法[J]. 桂林电子科技大学学报, 2022, 42(2): 143-147.
Xu Yumiao, Xu Wenjing, Hu Qingjie. A multi‑level randomized coordinate descent algorithm for solving L1‑regularized L2‑loss support vector machines problems [J]. Journal of Guilin University of Electronic Technology, 2022, 42(2): 143-147.
[22] 史加荣, 王丹, 尚凡华, 等. 随机梯度下降算法研究进展[J]. 自动化学报, 2021, 47(9): 2103-2119.
Shi Jiarong, Wang Dan, Shang Fanhua, et al. Research advances on stochastic gradient descent algorithms [J]. Acta Automatica Sinica, 2021, 47(9): 2103-2119.
[23] Sandler M, Howard A, Zhu M, et al. MobilenetV2: Inverted residuals and linear bottlenecks [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 4510-4520.
[24] 王文秀, 郑鹏, 徐颖杰, 等. 基于改进SqueezeNet的棒状物表面缺陷识别[J]. 电子测量与仪器学报, 2023, 37(4): 240-249.
Wang Wenxiu, Zheng Peng, Xu Yingjie, et al. Rods surface defect identification based on improved squeezenet [J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(4): 240-249.
[25] 余慧明, 周志祥, 彭杨, 等. 一种基于改进Mask R—CNN模型的遥感图像目标识别方法[J]. 网络安全与数据治理, 2021, 40(3): 38-42, 47.
Yu Huiming, Zhou Zhixiang, Peng Yang, et al. A remote sensing image target recognition method based on improved Mask R—CNN model [J]. Cyber Security and Data Governance, 2021, 40(3): 38-42, 47.
[26] 余莉萍. 基于Grad—CAM的Mask—FGSM对抗样本攻击[J]. 计算机应用与软件, 2022, 39(7): 195-200.
Yu Liping. Mask—FGSM adversarial samples attack based on Grad—CAM [J]. Computer Applications and Software, 2022, 39(7): 195-200.
[27] 卫雅娜, 王志彬, 乔晓军, 等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181.
Wei Yana, Wang Zhibin, Qiao Xiaojun, et al. Lightweight disease identification method based on attention mechanism and EfficientNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181.
[28] 王军敏, 樊养余, 李祖贺. 基于深度卷积神经网络和迁移学习的纹理图像识别[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 701-710.
Wang Junmin, Fan Yangyu, Li Zuhe. Texture image recognition based on deep convolutional neural network and transfer learning [J]. Journal of Computer‑Aided Design & Computer Graphics, 2022, 34(5): 701-710.
|