[ 1 ] 王瑾瑾, 王彦发, 马东芬, 等. 巴州品牌农业发展模式分析——以库尔勒香梨为例[J].农村经济与科技, 2023, 34(4): 6-9.
[ 2 ] Sébastien P, Tanguy L, Sandrine R, et al. Effect of carbohydrates and night temperature on night respiration in rice [J]. Journal of Experimental Botany, 2015, 66(13): 3931-3944.
[ 3 ] 陈夕朦, 崔菁, 赵秀文, 等. 技术伦理视野下人工智能的未来展趋势[J]. 中国软科学, 2022(S1): 76-82.
Chen Ximeng, Cui Jing, Zhao Xiuwen, et al. Future development of “artificial intelligence”: A study from the perspective of technical ethics [J]. China Soft Science, 2022(S1): 76-82.
[ 4 ] Hameed K, Chai D, Rassau A. Score‑based mask edge improvement of Mask—RCNN for segmentation of fruit and vegetables [J]. Expert Systems with Applications, 2022, 190: 116205.
[ 5 ] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in non‑structural environment based on Mask—RCNN [J]. Computers and Electronics in Agriculture, 2019, 163: 104846.
[ 6 ] Zhang J, Karkee M, Zhang Q, et al. Multi‑class object detection using Faster R—CNN and estimation of shaking locations for automated shake‑and‑catch apple harvesting [J]. Computers and Electronics in Agriculture, 2020, 173: 105384.
[ 7 ] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO—V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[ 8 ] 王新彦, 易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报, 2023, 44(3): 171-176.
Wang Xinyan, Yi Zhengyang. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176.
[ 9 ] Liu T, Kang H, Chen C. ORB—Livox: A real‑time dynamic system for fruit detection and localization [J]. Computers and Electronics in Agriculture, 2023, 209: 107834.
[10] Kalfas I, Ketelaere B D, Bunkens K, et al. Towards automatic insect monitoring on witloof chicory fields using sticky plate image analysis [J]. Ecological Informatics, 2023, 75: 102037.
[11] 宋怀波, 马宝玲, 尚钰莹, 等. 基于YOLOv7—ECA模型的苹果幼果检测[J]. 农业机械学报, 2023, 54(6): 233-242.
Song Huaibo, Ma Baoling, Shang Yuying, et al. Young apple fruit detection based on YOLOv7—ECA model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 233-242.
[12] 张三林, 张立萍, 郑威强, 等. 基于YOLOv5的核桃品种识别与定位[J]. 中国农机化学报, 2022, 43(7): 167-172.
Zhang Sanlin, Zhang Liping, Zheng Weiqiang, et al. Identification and location of walnut varieties based on YOLOv5[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 167-172.
[13] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Train‑able bag‑of‑freebies sets new state‑of‑the‑art for real‑time object detectors [J]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7764-7475.
[14] Zhu L, Wang X, Ke Z, et al. BiFormer: Vision transformer with Bi—level routing attention [J]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 10323-10333.
[15] Tong Z, Chen Y, Xu Z, et al. Wise—IoU: Bounding box regression loss with dynamic focusing mechanism [J]. arXiv preprint arXiv: 2301.10051, 2003.
[16] Jocher G, Stoken A, Chaurasia A, et al. Ultralytics/YOLOv5: v6.0—YOLOv5n “Nano” models, roboflow integration, tensorFlow export, openCV DNN support [J]. Zenodo, 2021.
[17] Li C, Li L, Jiang H, et al. YOLOv6: A single‑stage object detection framework for industrial applications [J]. arXiv preprint arXiv: 2209.02976, 2022.
[18] Yang L, Zhang R Y, Li L, et al. Simam: A simple, parameter‑free attention module for convolutional neural networks [C]. International Conference on Machine Learning, 2021: 11863-11874.
[19] Kirillov A, Mintun E, Ravi N, et al. Segment anything [J]. arXiv preprint arXiv: 2304.02643, 2023.
[20] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Ccomputer Vision (ECCV), 2018: 3-19.
|