[ 1 ] 王璇, 刘军弟, 邵砾群, 等. 我国苹果产业年度发展状况及其趋势与建议[J]. 中国果树, 2018(3): 101-104, 108.
[ 2 ] 叶中华, 赵明霞, 贾璐. 复杂背景农作物病害图像识别研究[J]. 农业机械学报, 2021, 52(S1): 118-124, 147.
Ye Zhonghua, Zhao Mingxia, Jia Lu. Image recognition of crop diseases in complex background [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 118-124, 147.
[ 3 ] 苏仕芳, 乔焰. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报, 2021, 37(10): 127-134.
Su Shifang, Qiao Yan. Recognition of grape leaf diseases and mobile application based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 127-134.
[ 4 ] 彭红星, 徐慧明, 刘华鼐. 融合双分支特征和注意力机制的葡萄病虫害识别模型[J]. 农业工程学报, 2022, 38(10): 156-165.
Peng Hongxing, Xu Huiming, Liu Huanai. Model for identifying grape pests and diseases based on two‑branch feature fusion and attention mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 156-165.
[ 5 ] 苏宝峰, 沈磊, 陈山, 等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报, 2021, 52(11): 226-233, 252.
Su Baofeng, Shen Lei, Chen Shan, et al. Multi‑features identification of grape cultivars based on attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 226-233, 252.
[ 6 ] 胡志伟, 杨华, 黄济民, 等. 基于注意力残差机制的细粒度番茄病害识别[J]. 华南农业大学学报, 2019, 40(6): 124-132.
Hu Zhiwei, Yang Hua, Huang Jimin, et al. Fine‑grained tomato disease recognition based on attention residual mechanism [J]. Journal of South China Agricultural University, 2019, 40(6): 124-132.
[ 7 ] 张文轩, 吴秦. 基于多分支注意力增强的细粒度图像分类[J]. 计算机科学, 2022, 49(5): 105-112.
[ 8 ] 宋丽娟. 基于图像的农作物病害识别关键算法研究[D]. 西安: 西北大学, 2018.
[ 9 ] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述[J]. 自动化学报, 2017, 43(8): 1306-1318.
[10] 龙辰志, 陈平, 李传坤. 融合全局—局部上下文信息的小目标多人姿态估计[J]. 计算机工程, 2024, 50(4): 342-349.
[11] 齐爱玲, 王宣淋. 基于中层细微特征提取与多尺度特征融合细粒度图像识别[J]. 计算机应用, 2023, 43(8): 2556-2563.
[12] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[13] 黄英来, 艾昕. 改进残差网络在玉米叶片病害图像的分类研究[J]. 计算机工程与应用, 2021, 57(23): 178-184.
Huang Yinglai, Ai Xin. Research on classification of corn leaf disease image by improved residual network [J]. Computer Engineering and Applications, 2021, 57(23): 178-184.
[14] Zagoruyko S, Komodakis N. Wide residual networks [J]. arVix preprint arVix: 1605.07146, 2016.
[15] Tan M, Pang R, Le Q V. EfficientDet: Scalable and efficient object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020: 10778-10787.
[16] Woo S, Park J, Lee J, et al. CBAM: Convolutional block attention module [C]. European Conference on Computer Vision (ECCV), 2018: 1-17.
[17] Li F, Deng J, Li K. ImageNet: Constructing a large‑scale image database [J]. Journal of Vision, 2010, 9(8): 1037.
[18] Zhai S, Wu H, Kumar A, et al. S3Pool: Pooling with stochastic spatial sampling [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4003-4011.
|