English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 169-175.DOI: 10.13733/j.jcam.issn.2095-5553.2025.06.025

• 设施农业与植保机械工程 • 上一篇    下一篇

面向复杂背景的CFFA—ResNet苹果叶片病害识别模型构建

裴文杰1,2,刘拥民1,2,胡魁1,2,石婷婷1,2   

  1. (1. 中南林业科技大学计算机与信息工程学院,长沙市,410004; 
    2. 中南林业科技大学智慧林业云研究中心,长沙市,410004)
  • 出版日期:2025-06-15 发布日期:2025-05-22
  • 基金资助:
    国家自然科学基金资助项目(31870532);长沙市科技计划项目(kq2402265)

Construction of CFFA—ResNet apple leaf disease identification model for complex background

Pei Wenjie1, 2, Liu Yongmin1, 2, Hu Kui1, 2, Shi Tingting1, 2   

  1. (1. College of Computer Information, Central South University of Forestry and Technology, Changsha, 410004, China;
    2. Smart Forestry Cloud Research Center, Central South University of Forestry and Technology, Changsha, 410004, China)

  • Online:2025-06-15 Published:2025-05-22

摘要:

目前大部分叶片病害识别研究在简单背景下的公开数据集中进行,实际应用过程中叶片背景复杂且数据样本很少,传统网络模型难以从复杂背景图像中有效提取病害区域特征。基于经典ResNet模型,提出一种全新的跨层特征融合注意力网络CFFA—ResNet。通过双分支跨层连接提取并融合不同维度特征,实现上下文信息的传递,增强细微判别性特征间的关联;通过注意力特征融合实现局部与全局语义信息的互补,并以加权的方式突出重要信息对融合的影响,重点提取病害区域特征,降低无关信息的干扰。结果表明,相同的试验环境下,与常见传统模型相比,新模型平均识别准确率可达97.45%,分类性能明显提升,说明该网络有助于复杂背景下叶片病害识别的研究。

关键词: 智慧农业, 苹果叶片病害, 残差网络, 特征融合, 注意力机制, 复杂背景

Abstract:

Current research on leaf disease identification is predominantly carried out using public data sets with simplified contexts. However, in real‑world practical applications, the leaf backgrounds are often complex, and data samples are limited. Traditional network models struggle to effectively extract disease‑specific features from images with such challenging backgrounds. To address this issue, a novel cross‑layer feature fusion attention network (CFFA—ResNet) is proposed, building upon the classic ResNet architecture. The CFFA—ResNet model extracted and fused features of different dimensions through dual‑branch and cross‑layer connections to realize the transmission of contextual information and enhance the relationship between subtle discriminative features. By fusing attention features, the model combined local and global semantic information, thereby highlighting the contribution of important information through weighted fusion while focusing on the extraction of disease‑specific features while mitigating interference from irrelevant data. The experimental results show that, under identical experimental conditions, the CFFA—ResNet achieved an average recognition accuracy of 97.45%, outperforming traditional models and the significantly enhancing classification performance. These findings indicate that CFFA—ResNet is a robust and effective tool for leaf disease identification in complex contexts.

Key words: smart agriculture, apple leaf disease, residual network, feature fusion, attention mechanism, complex background

中图分类号: