[ 1 ] 石国栋. 玉米田科学除草技术及注意事项浅析[J]. 河北农业, 2023(6): 79-80.
[ 2 ] 本刊编辑部编辑. 农业农村部印发《到2025年化肥减量化行动方案》和《到2025年化学农药减量化行动方案》[J]. 乡村科技, 2022, 13(22): 2.
[ 3 ] 权龙哲, 张景禹, 姜伟, 等. 基于玉米根系保护的株间除草机器人系统设计与试验[J]. 农业机械学报, 2021, 52(12): 115-123.
Quan Longzhe, Zhang Jingyu, Jiang Wei, et al. Development and experiment of intra‑row weeding robot system based on protection of maize root system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 115-123.
[ 4 ] 王照, 徐建光, 张子璐, 等. 人工智能与安全新进展[J]. 数据通信, 2023(5): 24-29.
[ 5 ] Champ J, Mora‑Fallas A, Goëau H, et al. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots [J]. Applications in Plant Sciences, 2020, 8(7): e11373.
[ 6 ] Utstumo T, Urdal F, Brevik A, et al. Robotic in‑row weed control in vegetables [J]. Computers and Electronics in Agriculture, 2018, 154: 36-45.
[ 7 ] Bah M D, Hafiane A, Canals R. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images [J]. Remote Sensing, 2018, 10(11): 1690.
[ 8 ] 何全令, 杨静文, 梁晋欣, 等. 面向嵌入式除草机器人的玉米田间杂草识别方法[J]. 计算机工程与应用, 2024, 60(2): 304-313.
He Quanling, Yang Jingwen, Liang Jinxin, et al. Weed identification method in corn fields applied to embedded weeding robots [J]. Computer Engineering and Applications, 2024, 60(2): 304-313.
[ 9 ] 刘冰杰, 周雅楠, 周小辉, 等. 基于深度学习的玉米田间杂草识别研究[J] , 河南农业大学学报, 2024, 58(2): 279-286.
Liu Bingjie,Zhou Yanan,Zhou Xiaohui, et al. Deep learning‑based weed recognition model in the maize field [J]. Journal of Henan Agricultural University, 2024, 58(2): 279-286.
[10] 赖汉荣, 张亚伟, 张宾, 等. 玉米除草机器人视觉导航系统设计与试验[J]. 农业工程学报, 2023, 39(1): 18-27.
Lai Hanrong, Zhang Yawei, Zhang Bin, et al. Design and experiment of the visual navigation system for a maize weeding robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(1): 18-27.
[11] Agrawal N, Prabhakaran V, Wobber T, et al. Design tradeoffs for SSD performance [C]. Usenix Technical Conference, 2008: 57-70.
[12] Jocher G, Chaurasia A, Stoken A, et al. ultralytics/ YOLOv5: v6.2—YOLOv5 classification models, apple M1, reproducibility, clearML and deci. ai integrations [J]. Zenodo, 2022: 11-25.
[13] Wu W, Liu H, Li L, et al. Application of local fully convolutional neural network combined with YOLO v5 algorithm in small target detection of remote sensing image [J]. PloS One, 2021, 16(10): e0259283.
[14] Girshick R. Fast R—CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[15] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag‑of‑freebies sets new state‑of‑the‑art for real‑time object detectors [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[16] 孙书魁, 范菁, 孙中强, 等. 基于深度学习的图像数据增强研究综述[J]. 计算机科学, 2024, 51(1): 150-167.
Sun Shukui, Fan Jing, Sun Zhongqiang, et al. Survey of image data augmentation techniques based on deep learning [J]. Computer Science, 2024, 51(1): 150-167.
[17] Mahasin M, Dewi I A. Comparison of CSPDarkNet53, CSPResNeXt—50, and EfficientNet—B0 Backbones on YOLO v4 as object detector [J]. International Journal of Engineering Science and Information Technology, 2022, 2(3): 64-72.
[18] 胡奕帆, 赵贤林, 李佩娟, 等. 基于改进YOLOv5的自然环境下番茄果实检测[J]. 中国农机化学报, 2023, 44(10): 231-237.
Hu Yifan, Zhao Xianlin, Li Peijuan, et al. Tomato fruit detection in natural environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 231-237.
[19] 乔珠峰, 赵秋菊, 郭建鑫, 等. 基于改进YOLOv5的草莓病害智能识别终端设计[J]. 中国农机化学报, 2024, 45(3): 205-211.
Qiao Zhufeng, Zhao Qiuju, Guo Jianxin, et al. Design of strawberry disease intelligent identification terminal based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(3): 205-211.
[20] 王菁, 范晓飞, 赵智慧, 等. 基于YOLO算法的不同品种枣自然环境下成熟度识别[J]. 中国农机化学报, 2022, 43(11): 165-171.
Wang Jing, Fan Xiaofei, Zhao Zhihui, et al. Maturity identification of different jujube varieties under natural environment based on YOLO algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 165-171.
[21] 刘晓文, 曾雪婷, 李涛, 等. 基于改进YOLO v7的生猪群体体温自动检测方法[J]. 农业机械学报, 2023, 54(S1): 267-274.
Liu Xiaowen, Zeng Xueting, Li Tao, et al. Automatic detection method of body temperature in herd of pigs based on improved YOLO v7 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(S1): 267-274.
[22] Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning [J]. Neurocomputing, 2021, 452: 48-62.
[23] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13708-13717.
[24] Gong Y, Yu X, Ding Y, et al. Effective fusion factor in FPN for tiny object detection [C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 1159-1167.
[25] Wang K, Liew J H, Zou Y, et al. PANet: Few‑shot image semantic segmentation with prototype alignment [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9196-9205.
[26] Chen J, Mai H S, Luo L, et al. Effective feature fusion network in BiFPN for small object detection [C]. IEEE International Conference on Image Processing (ICIP), 2021: 699-703. |