[1] 罗凡, 费学谦, 郭少海. 油茶果采收及干燥方式对油茶籽油品质的影响[J]. 中国油脂, 2015, 40(11): 69-73.
Luo Fan, Fei Xueqian, Guo Shaohai. Effects of harvest time and drying methods on quality of oiltea camellia seed oil [J]. China Oils and Fats, 2015, 40(11): 69-73.
[2] 闫锋欣, 李许杰, 杨永霞, 等. 手持冲击梳刷式油茶果采摘装置设计与试验[J]. 农业机械学报, 2023, 54(12):129-140.
Yan Fengxin, Li Xujie, Yang Yongxia, et al. Design and experiment of handheld impacting combtype Camellia oleifera fruit harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 129-140.
[3] 伍德林, 杨俊华, 刘芸, 等. 我国油茶果采摘装备研究进展与趋势[J]. 中国农机化学报, 2022, 43(1): 186-194.
Wu Delin, Yang Junhua, Liu Yun,et al. Research progress and trend of camellia fruit picking equipment in China [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 186-194.
[4] Yuan H, Huang K, Ren C, et al. Pomelo tree detection method based on attention mechanism and crosslayer feature fusion [J]. Remote Sensing, 2022, 14(16): 3902.
[5] Koirala A, Walsh K B, Wang Z, et al. Deep learning for realtime fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’ [J]. Precision Agriculture, 2019, 20(6): 1107-1135.
[6] 赵辉, 乔艳军, 王红君, 等. 基于改进YOLOv3的果园复杂环境下苹果果实识别[J]. 农业工程学报, 2021, 37(16): 127-135.
Zhao Hui, Qiao Yanjun, Wang Hongjun, et al. Apple fruit recognition in complex orchard environment based on improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 127-135.
[7] Wu D, Jiang S, Zhao E, et al. Detection of Camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation [J]. Applied Sciences, 2022, 12(22): 11318.
[8] Tang Y, Zhou H, Wang H, et al. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision [J]. Expert Systems with Applications, 2023, 211: 118573.
[9] 吕帅朝, 马宝玲, 宋磊, 等. 基于YOLON网络的多形态油茶果实夜间检测方法研究[J]. 西北农林科技大学学报(自然科学版), 2023(8): 141-154.
Lü Shuaichao, Ma Baoling, Song Lei, et al. Nighttime detection method of polymorphic Camellia oleifera fruits based on YOLON network [J]. Journal of Northwest A & F University (Natural Science Edition), 2023(8): 141-154.
[10] 宋怀波, 王亚男, 王云飞, 等. 基于YOLO v5s的自然场景油茶果识别方法[J]. 农业机械学报, 2022, 53(7): 234-242.
Song Huaibo, Wang Yanan, Wang Yunfei, et al. Camellia oleofera fruit detection in natural scene based on YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 234-242.
[11] Chen S, Zou X, Zhou X, et al. Study on fusion clustering and improved YOLOv5 algorithm based on multiple occlusion of Camellia oleifera fruit [J]. Computers and Electronics in Agriculture, 2023, 206: 107706.
[12] 严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46.
Yan Enping, Ji Yu, Yin Xianming, et al. Rapid estimation of camellia oleifera yield based on automatic detection of canopy fruits using UAV images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 39-46.
[13] 尹川, 苏议辉, 潘勉, 等. 基于改进YOLOv5s的名优绿茶品质检测算法[J]. 农业工程学报, 2023, 39(8): 179-187.
Yin Chuang, Su Yihui, Pan Mian, et al. Detection of the quality of famous green tea based on improved YOLOv5s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 179-187.
[14] Chen C, Liu M Y, Tuzel O, et al. R-CNN for small object detection [C]. Computer VisionACCV 2016: 13th Asian Conference on Computer Vision, 2017: 214-230.
[15] Sunkara R, Luo T. No more strided convolutions or pooling: A new CNN building block for lowresolution images and small objects [C]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 443-459.
[16] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[17] Xu C, Wang J, Yang W, et al. Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 79-93.
[18] Sajjadi M S M, Vemulapalli R, Brown M. Framerecurrent video superresolution [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6626-6634.
|