[1] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2-6.
[2] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[3] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[4] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] Liu W, Dragomir A, Dumitru E, et al. SSD: Single shot multibox detector [C]. Computer VisionECCV 2016: 14th European Conference, 2016: 21-37.
[6] 王小荣, 许燕, 周建平, 等. 基于改进YOLOv7的复杂环境下红花采摘识别[J]. 农业工程学报, 2023, 39(6): 169-176.
Wang Xiaorong, Xu Yan, Zhou Jianping, et al. Safflower picking recognition in complex environments based on an improved YOLOv7 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(6): 169-176.
[7] 汪斌斌, 杨贵军, 杨浩, 等. 基于YOLO_X和迁移学习的无人机影像玉米雄穗检测[J]. 农业工程学报, 2022, 38(15): 53-62.
Wang Binbin, Yang Guijun, Yang Hao, et al. UAV images for detecting maize tassel based on YOLO_X and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 53-62.
[8] 王建翠, 惠巧娟, 吴立国, 等 基于多尺度注意力和深度可分离卷积的农田杂草检测[J]. 中国农机化报, 2023, 44(5): 182-187.
Wang Jiancui, Hui Qiaojuan, Wu Liguo, et al. Field weeds detection based on multiscale attention and depth separable convolution [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 182-187.
[9] 刘海涛, 韩鑫, 兰玉彬, 等. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108.
Liu Haitao, Han Xin, Lan Yubin, et al. Precise recognition method of cotton top buds based on YOLOv4 network [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108.
[10] 陈柯屹, 朱龙付, 宋鹏, 等. 融合动态机制的改进型Faster R-CNN识别田间棉花顶芽[J]. 农业工程学报, 2021, 37(16): 161-168.
Chen Keyi, Zhu Longfu, Song Peng, et al. Recognition of cotton terminal bud in field using improved Faster R-CNN by integrating dynamic mechanism [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 161-168.
[11] 樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan,et al. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[12] 鲍文霞, 谢文杰, 胡根生, 等. 基于TPH-YOLO的无人机图像麦穗计数方法[J]. 农业工程学报, 2023, 39(1): 155-161.
Bao Wenxia, Xie Wenjie, Hu Gensheng, et al. Wheat ear counting method in UAV images based on TPH-YOLO [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(1): 155-161.
[13] 刘姣娣, 何捷, 许洪振, 等. 基于改进YOLOv4-Tiny的蔗芽识别方法[J]. 中国农机化学报, 2023, 44(11):169-175.
Liu Jiaodi, He Jie, Xu Hongzhen, et al. Identification method of cane sprout based on improved YOLOv4-Tiny [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(11): 169-175.
[14] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 200410934, 2020.
[15] Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[16] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[17] Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16519-16529.
[18] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] Zheng Z, Wang P, Liu W, et al. DistanceIoU loss: Faster and better learning for bounding box regression [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[20] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IoU loss for accurate bounding box regression [J]. Neurocomputing, 2022, 506: 146-157.
[21] Li C, Li L, Jiang H, et al. YOLOv6: A singlestage object detection framework for industrial applications [J].arXiv preprint arXiv: 2209.02976, 2022.
[22] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bagoffreebies sets new stateoftheart for realtime object detectors [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[23] Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3 [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[24] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
|