English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 150-155.DOI: 10.13733/j.jcam.issn.2095-5553.2025.06.022

• 农业智能化研究 • 上一篇    下一篇

基于改进YOLOv7—tiny的茶叶嫩芽识别方法

王启航,顾寄南,蒋兴宇,范天浩,潘知瑶   

  1. (江苏大学机械工程学院,江苏镇江,212013)
  • 出版日期:2025-06-15 发布日期:2025-05-22
  • 基金资助:
    江苏省重点研发计划重点项目(BE2021016—3)

Tea bud identification method based on improved YOLOv7—tiny

Wang Qihang, Gu Jinan, Jiang Xingyu, Fan Tianhao, Pan Zhiyao#br#   

  1. (College of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China)
  • Online:2025-06-15 Published:2025-05-22

摘要:

为提高茶叶采摘机器人的采摘效率和采摘精度,使模型能更方便地部署在低算力的移动端设备上,提出一种基于改进YOLOv7—tiny的茶叶嫩芽识别方法。首先,用HardSwish激活函数减少量化模式下数值的精度损失,使模型精度提升;其次,利用深度可分离卷积改进原网络中的ELAN模块减少该模块中的参数冗余,降低模型的参数量和计算量使模型轻量化;最后,为消除模型轻量化造成的精度损失,进一步提高模型精度,使用对小目标更敏感的EIoU边界框损失函数。试验结果显示,改进后的模型精确率、召回率与平均精度均值分别为79.6%、79.1%和81.4%,相比原始模型提升5.4%、2.3%和2.7%;并且改进后的模型参数量为4.8 M,相比原始模型降低20.0%;计算量为10.8 GFLOPs,相比原始模型降低16.9%。

关键词: 茶叶嫩芽识别, 轻量化, 深度可分离卷积, 边界框损失函数

Abstract:

To enhance the picking efficiency and accuracy of tea picking robots while ensuring compatibility with mobile devices with limited computational power, this study proposes a tea bud recognition method based on an improved YOLOv7—tiny model. The HardSwish activation function was incorporated to minimize accuracy loss of numerical values in quantization mode and improve the model's precision. Furthermore, the ELAN module in the original network was optimized using depthwise separable convolution, effectively reducing parameter redundancy and computational requirements in the module, thereby making the model more lightweight. To mitigate the accuracy loss associated with model lightweighting and to further improve the model accuracy, the EIoU bounding box loss function, known for its sensitivity to small objects, was employed. Experimental results showed that the improved model achieved P, R, and mAP of 79.6%, 79.1% and 81.4%, respectively, which represented improvements of 5.4%, 2.3% and 2.7% over the original model. Additionally,the parameter quantity of the improved model was reduced to 4.8 M, which was a 20.0% decrease compared tothe original model, while computational complexity dropped to 10.8 GFLOPs, marking a 16.9% reduction.

Key words: tea bud identification, light weight, depthwise separable convolutions, bounding box loss function

中图分类号: