[ 1 ] 赵小娟. 基于卷积神经网络的无人驾驶农用车辆路径优化研究[J]. 农机化研究, 2024, 46(7): 257-261.
[ 2 ] 马鹏飞.飞机非封闭组件气密性的超声波检测技术研究[D].南京: 南京航空航天大学, 2017.
Ma Pengfei. Research on ultrasonic testing technology for air‑tightness of aircraft non enclosed components [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
[ 3 ] 梁建伟, 袁绪昌, 李慧, 等. 基于机器视觉的车灯灯罩表面缺陷检测方法研究[J].现代工业经济和信息化, 2023, 13(12): 131-136, 139.
Liang Jianwei, Yuan Xuchang, Li Hui, et al. Research on surface defect detection method of lamp shade based on machine vision [J]. Modern Industrial Economy and Informationization, 2023, 13(12): 131-136, 139.
[ 4 ] 赵鑫. HWS15型发动机缸盖气密性检测装置的研发[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Zhao Xin. Research and development of leak dectection device for HWS15 engine cylinder [D]. Harbin: Harbin Institute of Technology, 2018.
[ 5 ] 郭渊, 周俊. 基于机器视觉的轴承缺陷检测研究进展[J].机电工程, 2024, 41(5): 761-774.
Guo Yuan, Zhou Jun. Research progress of bearing defect detection based on machine vision [J]. Journal of Mechanical & Electrical Engineering, 2024, 41(5): 761-774.
[ 6 ] 谭立志. 基于机器视觉技术的火花塞缺陷自动检测研究[J].小型内燃机与车辆技术, 2023, 52(5): 81-86.
Tan Lizhi. Research on automatic detection of spark plug defects based on machine vision technology [J].Small Internal Combustion Engine and Vehicle Technique, 2023, 52(5): 81-86.
[ 7 ] 曹兆峰. 气液两相流中气泡三维测量及行为研究[D].天津: 天津大学, 2012.
Cao Zhaofeng.Research on three‑dimensional measurement and behavior of bubble in gas‑liquid two‑phase flow [D]. Tianjin: Tianjin University, 2012.
[ 8 ] 游于训. 基于机器视觉的板式换热器气密性检测方法研究[D]. 杭州: 中国计量大学, 2015.
You Yuxun. Research detection method of plate hate exchanger′s tightness based on machine version [D]. Hangzhou: China University of Metrology, 2015.
[ 9 ] 吴春龙. 基于机器视觉的气密性检测装置研究与设计[D]. 杭州: 浙江理工大学, 2013.
Wu Chunlong. Research and design of gas tightness detection system based on machine version [D]. Hangzhou: Zhejiang University of Science and Technology, 2013.
[10] 余文勇, 张阳, 姚海明, 等. 基于轻量化重构网络的表面缺陷视觉检测[J].自动化学报, 2022, 48(9): 2175-2186.
Yu Wenyong, Zhang Yang, Yao Haiming, et al. Visual inspection of surface defects based on lightweight reconstruction network [J].Acta Automatica Sinica, 2022, 48(9): 2175-2186.
[11] 李少波, 杨静, 王铮, 等. 缺陷检测技术的发展与应用研究综述[J].自动化学报, 2020, 46(11): 2319-2336.
Li Shaobo, Yang Jing, Wang Zheng, et al. Review of development and application of defect detection technology [J]. Acta Automatica Sinica, 2020, 46(11): 2319-2336.
[12] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J].自动化学报, 2021, 47(5): 1017-1034.
Tao Xian, Hou Wei, Xu De. A survey of surface defect detection methods based on deep learning [J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034.
[13] 国务院. 国务院关于印发《中国制造2025》的通知. http: // www.gov.cn / zhengce / content / 2015-05 / 19 / content_9784. htm, 2015-05-19.
[14] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580−587.
[15] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[16] Girshick R. Fast R—CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440−1448.
[17] Ren S, He K, Gitshick R. Faster R—CNN:Towards real‑time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[18] 白雪冰, 车进, 吴金蔓. 多尺度特征融合的图像描述算法[J].计算机工程与应用, 2025, 61(7): 288-296.
Bai Xuebing, Che Jin, Wu Jingman. Image captioning algorithm for multi‑scale features fusion [J]. Computer Engineering and Applications, 2025, 61(7): 288-296.
[19] 万东东. 基于Retinex的低照明度图像增强算法研究[D].南京: 南京信息工程大学, 2023.
Wan Dongdong. Research on low illumination image enhancement algorithm based on Retinex [D]. Nanjing: Nanjing University of Information Technology, 2023.
[20] Ji S, Xu W, Yang M. 3D Convolutional neural networks for human action recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231.
[21] Sudhakar K, Shanmuganathan R. LP—3DCNN: Unveiling local phase in 3D convolutional neural networks [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4898-4907.
[22] Tran D, Bourdev L, Fergus R, et al. Learning spatiotemporal features with 3D convolutional networks [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 4489-4497.
[23] Zhu G, Zhang L, Shen P, et al. Continuous gesture segmentation and recognition using 3DCNN and convolutional LSTM [J]. IEEE Transactions on Multimedia, 2019, 21(4): 1011-1021.
[24] Akilan T Q, Wu J, Safaei A, et al. A 3D CNN-LSTM-based image‑to‑image foreground segmentation [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 959-971.
[25] He K, Zhang X, Ren S. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[26] 陈鼎圣, 刘战伟, 于洋. 冰体内气泡缺陷特征的“机器视觉”无损检测方法[J].实验力学, 2023, 38(6): 704-711.
Chen Dingsheng, Liu Zhanwei, Yu Yang. “Machine vision” nondestructive testing method for the defect characteristics of bubbles in ice [J]. Journal of Experimental Mechanics, 2023, 38(6): 704-711.
[27] Bodla N, Singh B, Chellappa R. Soft—NMS: Improving object detection with one line of code[C].Proceedings of the IEEE International Conference on Computer Vision, 2017: 5562-5570.
|