[ 1 ] Xue Z Y, Xu R J, Bai D, et al. YOLO-Tea: A tea disease detection model improved by YOLOv5 [J]. Forests, 2023(14): 415.
[ 2 ] Hu G S, Yang X W, Zhang Y, et al. Identification of tea leaf diseases by using an improved deep convolutional neural network [J]. Sustainable Computing: Informatics and Systems, 2019, 24: 100353.1-100353.8.
[ 3 ] Hu G S, Wu H Y, Zhang Y, et al. A low shot learning method for tea leaf's disease identification [J]. Computers and Electronics in Agriculture, 2019, 163: 104852.
[ 4 ] Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short‑term memory network [J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176.
[ 5 ] Qiao J F, Hu Z Q, Li W J. Soft measurement modeling based on chaos theory for biochemical oxygen demand (BOD) [J]. Water, 2016, 8(581): 1-21.
[ 6 ] 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学, 2019, 49(6): 698-716.
[ 7 ] Gavhale K R, Gawande U. An overview of the research on plant leaves disease detection using image processing techniques [J]. IOSR Journal of Computer Engineering, 2014, 16(1): 10-16.
[ 8 ] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J].农业机械学报, 2021, 52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(7): 1-18.
[ 9 ] Chaudhary A, Kolhe S, Kamal R. An improved random forest classifier for multi‑class classification [J]. Information Processing in Agriculture, 2016, 3(4): 215-222.
[10] Tetila E C, Machado B B, Belete N, et al. Identification of soybean foliar diseases using unmanned aerial vehicle images [J]. IEEE Geoscience and Remote Sensing Letters, 2017: 1-5.
[11] Kiani E, Mamedov T. Identification of plant disease infection using soft‑computing: Application to modern botany [J]. Procedia Computer Science, 2017: 893-900.
[12] 何雨霜, 王琢, 王湘平, 等. 深度学习在农作物病害图像识别中的研究进展[J].中国农机化学报, 2023, 44(2): 148-155.
He Yushuang, Wang Zhuo, Wang Xiangping, et al. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155.
[13] Zhang X H, Qiao Y, Meng F F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks [J]. IEEE Access, 2018: 2844405.
[14] Ferentinos K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture. 2018, 145: 311-318.
[15] Lu Y, Yi S J, Zeng N Y, et al. Identification of rice diseases using deep convolutional neural networks [J]. Neurocomputing, 2017, 267: 378-384.
[16] 李博, 江朝晖, 洪石兰, 等. 基于边缘智能的茶叶病害识别[J]. 中国农机化学报, 2022, 43(6): 175-180.
Li Bo, Jiang Zhaohui, Hong Shilan, et al. Tea leaf diseases recognition based on edge intelligence [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 175-180.
[17] Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[18] Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning [J]. Journal of Big Data, 2016, 3(9): 1-40.
[19] Sladojevic S, Arsenovic M, Anderla A, et al. Deep neural networks based recognition of plant diseases by leaf image classification [J]. Computational Intelligence and Neuroscience, 2016: 3289801.
[20] Mohanty S P, Hughes D P, Salathé M. Using deep learning for image‑based plant disease detection [J]. Frontiers in Plant Science, 2016: 01419.
[21] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201.
Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201.
[22] 钱嘉鑫, 余鹏飞, 李海燕, 等. 基于特征融合与注意力机制的野生菌细粒度分类[J]. 激光与光电子学进展, 2023, 60(4): 110-119.
Qian Jiaxin, Yu Pengfei, Li Haiyan, et al. Fine‑grained classification of wild mushrooms based on feature fusion and attention mechanism [J]. Laser & Optoelectronics Progress, 2023, 60(4): 110-119.
[23] 孙俊, 朱伟栋, 罗元秋, 等. 基于改进MobileNet-V2的田间农作物叶片病害识别[J]. 农业工程学报, 2021, 37(22): 161-169.
Sun Jun, Zhu Weidong, Luo Yuanqiu, et al. Recognizing the diseases of crop leaves in fields using improved Mobilenet-V2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 161-169.
[24] 孙云云, 江朝晖, 董伟, 等. 基于卷积神经网络和小样本的茶树病害图像识别[J]. 江苏农业学报, 2019, 35(1): 48-55.
[25] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
|