English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (3): 188-194.DOI: 10.13733/j.jcam.issn.2095-5553.2025.03.028

• 农业信息化工程 • 上一篇    下一篇

基于RGE—UNet模型的甘蔗蔗梢识别研究

沈中华1,程虎强1, 2,夏爱强1,李涵1   

  1. (1. 桂林理工大学,广西高校先进制造与自动化技术重点实验室,广西桂林,541006;
    2. 兰州信息科技学院智能装备学院,兰州市,730700)
  • 出版日期:2025-03-15 发布日期:2025-03-13
  • 基金资助:
    广西壮族自治区重大科技专项(桂科技字[2022]117号)

Research on sugarcane shoot recognition based on RGE—UNet model

Shen Zhonghua1, Cheng Huqiang1, 2, Xia Aiqiang1, Li Han1   

  1. (1. Guilin University of Technology, Guangxi University Key Laboratory of Advanced Manufacturing and Automation Technology, Guilin, 541006, China; 2. College of Intelligent Equipment, Lanzhou University of Information Science and Technology, Lanzhou, 730700, China)
  • Online:2025-03-15 Published:2025-03-13

摘要: 传统的甘蔗蔗梢图像分割算法步骤烦琐、整体优化较为困难,采用在小样本上仍表现优异的UNet网络,将模型原有主干网络替换为ResNet50来简化模型训练过程,上采样部分用Ghost轻量级模块替换普通卷积模块以减少模型的参数量和浮点数计算量,同时在编码器和解码器之间加入SE注意力机制对提取到的特征权重进行优化,最终得到一个轻量级的RGE—UNet蔗梢分割模型。结合迁移学习的方法对模型进行训练,将训练完成的模型通过Canny算子与水平垂直投影法对蔗梢区域进行识别,并提取蔗梢分割路径坐标。结果表明,基于RGE—UNet模型识别方法的平均像素准确率为94.98%,单张图片分割时间为0.31 s,分割速度较UNet与R50—UNet模型分别提高13.9%和18.4%。该模型能实现对蔗梢的快速准确识别,为甘蔗收割的自动化研究提供一定的技术参考。

关键词: 甘蔗蔗梢, 路径识别, 语义分割, RGE—UNet, 迁移学习

Abstract:

In response to the problems of cumbersome steps and difficulty in overall optimization of traditional image segmentation algorithms for sugarcane shoots, this paper adopts a UNet network, which performs well on small samples. The original backbone network of the model is replaced with ResNet50 to simplify the model training process. In the upsampling part, the Ghost lightweight module is used to replace the ordinary convolution module to reduce the number of model parameters and floating-point operations. An SE attention mechanism is added between the encoder and decoder to optimize the extracted feature weights. The result is a lightweight RGE—UNet sugarcane shoot segmentation model. Then, the trained model identifies the shoot region using the Canny operator and the horizontal/vertical projection methods and extracts the segmentation path coordinates. The experimental results show that the recognition method based on the RGE—UNet model achieves an average pixel accuracy of 94.98%, a segmentation time of 0.31 seconds per image, improving segmentation speed by 13.9% and 18.4% compared with the UNet and R50—UNet models, respectively. This model achieves fast and accurate recognition of sugarcane shoots and provides technical references for the automation of sugarcane harvesting.

Key words:  , sugarcane shoots, path recognition, semantic segmentation, RGE—UNet, transfer learning

中图分类号: