[1] 肖威, 陆静平. 甘蔗机械化收获技术现状分析[J]. 中国农机化学报, 2022, 43(2): 50-59, 142.
Xiao Wei, Lu Jingping. Analysis of sugarcane mechanized harvesting technology [J]. Journal of Chinese Agricultural Mechanization, 2022,43 (2): 50-59, 142.
[2] 罗菊川, 区颖刚, 刘庆庭, 等. 整秆式甘蔗联合收获机断蔗尾机构[J]. 农业机械学报, 2013, 44(4): 89-94, 107.
Luo Juchuan, Qu Yinggang, Liu Qingting, et al. Tailbreaking mechanism of whole stalk sugarcane combine harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 89-94, 107.
[3] Xie L, Wang J, Cheng S, et al. Optimisation and dynamic simulation of a conveying and top breaking system for wholestalk sugarcane harvesters [J]. Biosystems Engineering, 2020, 197: 156-169.
[4] 谢卢鑫, 王俊, 程绍明, 等. 甘蔗收获机剥叶断尾系统的设计与转速优化[J]. 农业工程学报, 2016, 32(6): 50-57.
Xie Luxin, Wang Jun, Cheng Shaoming, et al. Design and speed optimization of leafcrushing and tailbreaking system of sugarcane harvester [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 50-57.
[5] 沈中华, 李尚平, 麻芳兰, 等. 小型甘蔗收获机喂入能力仿真与试验[J]. 农业机械学报, 2014, 45(11): 117-123.
Shen Zhonghua, Li Shangping, Ma Fanglan, et al. Simulation and experiment on feed ability of small sugarcane harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45 (11): 117-123.
[6] 麻芳兰, 蒋红梅, 李尚平, 等. 整秆式甘蔗收获机剥叶断尾机构设计与试验[J]. 农业机械学报, 2012, 43(6): 73-78,7.〖JP2〗Ma Fanglan, Jiang Hongmei, Li Shangping, et al. Design and experiment on cleaning leaves and breaking tails mechanism of whole stalk sugarcane harvester [J].〖JP〗 Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 73-78, 7.
[7] 杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181.
Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181.
[8] Liu G X, Mao S Y, Kim J H. A maturetomato detection algorithm using machine learning and color analysis [J]. Sensors, 2019, 19(9): 2023.
[9] Kadir M F A, Yusri N A N, Rizon M, et al. Automatic mango detection using texture analysis and randomised hough transform [J]. Applied Mathematical Sciences, 2015, 9(129): 6427-6436.
[10] 张小花, 马瑞峻, 吴卓葵, 等. 基于机器视觉的果园成熟柑橘快速识别及产量预估研究[J]. 广东农业科学, 2019, 46(7): 156-161.
Zhang Xiaohua, Ma Ruijun, Wu Zhuokui, et al. Fast detection and yield estimation of ripe citrus fruit based on machine vision [J]. Guangdong Agricultural Sciences, 2019, 46(7): 156-161.
[11] 赵博杰. 基于机器视觉的茶叶嫩芽识别关键技术研究[D]. 鞍山:辽宁科技大学, 2020.
Zhao Bojie. Tea bud segmentation and recognition based on machine vision [D]. Anshan: University of Science and Technology Liaoning, 2020.
[12] 韩振浩, 李佳, 苑严伟, 等. 基于U—Net网络的果园视觉导航路径识别方法[J]. 农业机械学报, 2021, 52(1): 30-39.
Han Zhenhao, Li Jia, Yuan Yanwei, et al. Path recognition of orchard visual navigation based on U—Net [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 30-39.
[13] 张佳彬. 基于深度学习的头足类动物角质颚色素沉积量化方法研究[D]. 上海: 上海海洋大学, 2022.
Zhang Jiabin. A quantitative method of pigmentation in beak of cephalopods based on deep learning [D]. Shanghai: Shanghai Ocean University, 2022.
[14] 朱成宇. 基于轻量级卷积神经网络的水稻病害识别[D]. 南宁: 广西大学, 2022.Zhu Chengyu. Rice disease identification based on lightweight convolutional neural network [D]. Nanning: Guangxi University, 2022.
[15] 马冬梅, 杨彩锋, 李鹏辉. 多尺度特征融合的图像语义分割[J]. 西北师范大学学报(自然科学版), 2020, 56(1): 44-50.Ma Dongmei, Yang Caifeng, Li Penghui. Image semantic segmentation based on multiscale feature fusion [J]. Journal of Northwest Normal University (Natural Science), 2020, 56 (1): 44-50.
[16] 胡明玉. 基于深度学习的苹果树芽体图像识别方法研究[D]. 北京: 中国农业科学院, 2021.
Hu Mingyu. Research on apple tree bud image recognition method based on deep learning [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
[17] 钟志峰, 何佳伟, 侯瑞洁, 等. 改进UNet的轻量化道路图像语义分割算法[J]. 现代电子技术, 2022, 45(19): 71-76.
Zhong Zhifeng, He Jiawei, Hou Ruijie, et al. Lightweight road image semantic segmentation algorithm based on improved UNet [J]. Modern Electronics Technique, 2022, 45 (19): 71-76.
[18] 徐旭, 陈曦. 基于FPGA的sobel边缘检测算法的实现[J]. 电子测试, 2022, 36(23): 63-65.
Xu Xu, Chen Xi. Implementation of sobel edge detection algorithm based on FPGA [J]. Electronic Test, 2022, 36 (23): 63-65.
[19] 王嘉豪. 基于机器视觉的铝车身缺陷特征在线检测技术研究[D]. 天津: 天津理工大学, 2022.
Wang Jiahao. Research on online defect feature detection technology of aluminum body based on machine vision [D]. Tianjin: Tianjin University of Technology, 2022.
[20] 刘博一. 基于双目立体视觉的焊缝定位方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
Liu Boyi. Research on weld location method based on binocular stereo vision [D]. Harbin: Harbin Institute of Technology, 2018.
|