English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (2): 253-258.DOI: 10.13733/j.jcam.issn.2095‑5553.2025.02.037

• 农业智能化研究 • 上一篇    下一篇

基于U2—DSCNet植物叶片分割方法研究

曾德斌1,2,陆万荣3,郑良芳1,2,施明登1,2,陈文绪1,2   

  • 出版日期:2025-02-15 发布日期:2025-01-24
  • 基金资助:
    塔里木大学校长基金项目(TDZKSS202139,TDZKSS202225)

Research on plant leaf segmentation method based on U2—DSCNet 

Zeng Debin1, 2, Lu Wanrong3, Zheng Liangfang1, 2, Shi Mingdeng1, 2, Chen Wenxu1, 2   

  • Online:2025-02-15 Published:2025-01-24

摘要: 为提高复杂背景情况下植物叶片分割算法精度、效果以及减少卷积计算量,提出一种改进的U2—Net语义分割模型U2—DSCNet。该模型基于U2—Net的RSU残差结构引入深度可分离卷积,采用DSC—RSU残差模块替代U2—Net的RSU单元,得到改进的U2—Net语义分割模型U2—DSCNet。模型由编码器、解码器、特征融合3部分构成,编码器有6层编码模块(En_1~En_6),解码器有5层解码模块(De_1~De_5),接着对5个解码器输出的图进行特征融合,得到融合不同尺度语义信息的特征图来用于模型训练。在测试集和自然环境下采集的图片上进行模型验证试验,与FCN、SegNet、U—Net和U2—Net等算法进行对比。采用精确率、召回率、Fβ分数和交并比作为评价指标,U2—DSCNet在4个指标中的结果为0.952,0.956,0.952,80.3,相比于其他几种分割算法均有显著提高,并且模型尺寸和训练效率也比U2—Net更好,模型尺寸为137 MB,训练时间为0.72 s。该模型在拥有高分割准确率的同时具有良好的泛化能力。

关键词: 植物叶片, U2—DSCNet, 语义分割, 残差连接, 深度可分离卷积

Abstract: In order to enhance the accuracy and effectiveness of plant leaf segmentation algorithms in complex backgrounds and reduce the computational load of convolution, an improved U2—Net semantic segmentation model, U2—DSCNet, is proposed. This model introduces Depthwise separable convolution based on the RSU residual structure of U2—Net. The RSU unit of U2—Net is replaced by using the DSC—RSU residual module toachieve an improved U2—Net semantic segmentation model, U2—DSCNet. The model consists of encoder, decoder, and feature fusion. The encoder has 6 encoding modules (En_1—En_6), and the decoder has 5 decoding modules (De_1—De_5). Subsequently, feature fusion is performed on the output images from the 5 decoders, ultimately obtaining a feature map that integrates semantic information from different scales for model training. Model validation experiments were conducted on a test set and images collected in natural environments, and the results were compared with those of algorithms such as FCN, SegNet, U—Net, and U2—Net. By using precision rate, recall rate, Fβ, and IoU as evaluation metrics, U2—DSCNet achieved results of 0.952, 0.956, 0.952, and 80.3 in these four metrics, showing significant improvements compared to the other segmentation algorithms. Moreover, the model size and training efficiency are also better than those of U2—Net, with a model size of 137 MB and a training time of 0.72 s. The experimental results demonstrate that this model not only achieves high segmentation accuracy but also possesses good generalization capabilities.

Key words: plant leaves, U2—DSCNet, semantic segmentation, residual connection, deep separable convolution

中图分类号: