English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 250-258.

• 车辆与动力工程 • 上一篇    下一篇

基于麻雀算法优化的LQR农机横向跟踪控制方法

魏世博,吴翔,王瞧,牛群峰,樊广晓   

  1. (河南工业大学电气工程学院,郑州市,450001)
  • 出版日期:2025-06-15 发布日期:2025-05-23
  • 基金资助:
    河南省重点研发与推广专项(科技攻关)项目(222103810083);河南省科技攻关项目(222102220080);河南工业大学博士启动基金(2019BS055)

Horizontal tracking control method of LQR agricultural machinery based on sparrow algorithm optimization

Wei Shibo, Wu Xiang, Wang Qiao, Niu Qunfeng, Fan Guangxiao   

  1. (School of Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, China)
  • Online:2025-06-15 Published:2025-05-23

摘要:

路径跟踪在智能农机中至关重要。针对线性二次型调节器(LQR)的系数矩阵Q和R选取困难易造成跟踪精度不佳问题,提出一种基于麻雀算法优化的LQR农机横向跟踪控制方法。首先,以拖拉机二自由度车辆动力学为基础,构建横向跟踪误差模型,并采用前馈补偿的方式抑制稳态误差。其次,设定横向误差阈值,一旦超过该误差阈值,将采用麻雀算法对权重系数进行优化调整,以提高路径跟踪精度。最后,运用CarSim—Simulink平台进行联合仿真,通过3种不同曲率的单弯道路径和多弯道正弦路径对农机横向跟踪控制器进行精度测试,并与传统LQR控制器、传统MPC控制器、粒子群优化LQR控制器进行试验对比。结果表明,传统LQR控制器和传统MPC控制器以及粒子群优化LQR控制器在4条路径下平均横向误差分别为0.066 7 m、0.074 9 m、0.035 9 m,而具备麻雀优化功能的控制器平均横向误差最大为0.015 m,具有较好的跟踪效果。

关键词: 智能农机, 横向跟踪, LQR, 麻雀算法, 自适应权重, 粒子群优化

Abstract:

Path tracking plays an important role in intelligent agricultural machinery. To address the challenge of poor tracking accuracy caused by difficulties in selecting the coefficient matrices Q and R in a linear quadratic regulator (LQR), a lateral tracking control method for LQR agricultural machinery based on the sparrow algorithm was proposed. First, a lateral tracking error model was constructed using a two‑degree‑of‑freedom tractor dynamic model, with feedforward compensation employed to suppress steady‑state errors. Secondly, a lateral error threshold was then defined, beyond which the Sparrow algorithm optimized and adjusted the LQR weight coefficienst to improve the path tracking accuracy. Finally, the proposed method was evaluated through co‑simulation using the CarSim—Simulink platform. The precision of the agricultural machinery lateral tracking controller was tested on paths with three different curvatures, including single‑bend path and multi‑bend sinusoidal paths. The results were compared with traditional LQR, traditional MPC, and particle swarm optimization (PSO)—LQR controllers. Experimental results showed that the average lateral error of the traditional LQR, MPC, and PSO—LQR controllers across four path scenarios was 0.066 7 m, 0.074 9 m and 0.035 9 m, respectively. In contrast, the proposed sparrow algorithm‑optimized LQR controller achieved an average lateral error of 0.015 m, which significantly outperformed the other methods in tracking precision.

Key words: intelligent agricultural machinery, horizontal tracking, LQR, sparrow algorithm, adaptive weight, particle swarm optimization

中图分类号: