[1] Zhang B, Tang L, Decastro J. A recursive receding horizon planning for unmanned vehicles [J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2912-2920.
[2] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [J]. Neural computation, 2006, 18(7): 1527-1554.
[3] Khatib O. Realtime obstacle avoidance for manipulators and mobile robots [J]. International Journal of Robotics Research, 1986, 5(1): 90-98.
[4] Zlochin M, Birattari M, Meuleau N, et al. Modelbased search for combinatorial optimization: A critical survey [J]. Annals of Operations Research, 2004, 131(Oct): 373-395.
[5] Kennedy J, Eberhart R. Particle swarm optimization [C]. Icnn95international Conference on Neural Networks. IEEE, 1995.
[6] Lavalle S M, Kuffner J J. Randomized kinodynamic planning [C]. IEEE International Conference on Robotics & Automation. IEEE, 2002.
[7] Mabrouk M H, McInnes C R. Solving the potential field local minimum problem using internal agent states [J]. Robotics and Autonomous Systems, 2008, 56(12): 1050-1060.
[8] 黄兴华. 基于改进人工势场法的移动机器人路径规划研究[D]. 重庆: 重庆大学, 2010.
Huang Xinghua. Research on mobile robot path planning based on improved artificial potential field method [D]. Chongqing: Chongqing University, 2010.
[9] 温素芳, 郭光耀. 基于改进人工势场法的移动机器人路径规划[J]. 计算机工程与设计, 2015, 36(10): 2818-2822.
Wen Sufang, Guo Guangyao. Path planning of mobile robot based on improved artificial potential field approach [J]. Computer Engineering and Design, 2015(10): 2818-2822.
[10] Yun X, Tan K C. A wallfollowing method for escaping local minima in potential field based motion planning [C]. 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR97. IEEE, 1997: 421-426.
[11] 王丽. 移动机器人路径规划方法研究[D]. 西安: 西北工业大学, 2007.
Wang Li. Research on path planning method of mobile robot [D]. Xian: Northwestern Polytechnical University, 2007.
[12] 王洪斌, 郝策, 张平, 等. 基于A*算法和人工势场法的移动机器人路径规划[J]. 中国机械工程, 2019, 30(20): 2489-2496.
Wang Hongbin, Hao Ce, Zhang Ping, et al. Path planning of mobile robot based on A* algorithm and artificial potential field method [J]. China Mechanical Engineering, 2019, 30(20): 2489-2496.
[13] 程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55(23): 29-34.
Cheng Zhi, Zhang Zhian, Li Jinzhi, et al. Mobile robots path planning based on improved artificial potential field [J]. Computer Engineering and Applications, 2019, 55(23): 29-34.
[14] 黄炳强, 曹广益. 基于人工势场法的移动机器人路径规划研究[J]. 计算机工程与应用, 2006, 42(27): 26-28.
Huang Bingqiang, Cao Guangyi. The path planning research for mobile robot based on the artificial potential field [J]. Computer Engineering and Applications, 2006, 42(27): 26-28.
[15] Kim J O, Khosla P K. Realtime obstacle avoidance using harmonic potential functions [J]. IEEE Transactions on Robotics & Automation, 1992, 8(3): 338-349.
[16] 高升, 董洪斌. 一种基于速度势场的局部在线避碰方法[J]. 哈尔滨师范大学自然科学学报, 2003, 19(1): 42-45.
Gao Sheng, Dong Hongbin. One obstacles avoidance method by velocity potential field [J]. Natural Science Journal of Harbin Normal University, 2003, 19(1): 42-45.
[17] 郭枭鹏. 基于改进人工势场法的路径规划算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[18] 徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40(12): 3508-3512.
Xu Xiaoqiang, Wang Mingyong, Mao Yan. Path planning of mobile robot based on improved artificial potential field method [J]. Journal of Computer Applications, 2020, 40(12): 3508-3512.
[19] 于光金. 移动机器人路径规划方法研究[D]. 青岛: 中国石油大学, 2008.
[20] Zhu Q, Yan Y, Xing Z. Robot path planning based on artificial potential field approach with simulated annealing [C]. Sixth International Conference on Intelligent Systems Design and Applications. IEEE, 2006.
[21] 朱颖, 李元鹏, 张亚婉, 等. 基于改进人工势场法的搬运机器人路径规划[J]. 电子测量技术, 2020, 43(17): 101-104.
[22] 杨柳, 张洪, 高忠国. 基于人工势场法的移动机器人路径规划研究[J]. 机床与液压, 2011, 39(9): 68-70.
|