[ 1 ] 王丽. 保山市2014—2017年野生菌中毒事件流行病学分析及防治对策研究[D]. 昆明: 昆明理工大学, 2018.
[ 2 ] 刘春梅, 孙玲, 白俊, 等. 云南省勐腊县2017—2021年食源性疾病暴发事件的流行特征分析[J]. 上海预防医学, 2022, 34(10): 1002-1006.
[ 3 ] 肖杰文, 赵铖博, 李欣洁, 等. 基于深度学习的蘑菇图像分类研究[J]. 软件工程, 2020, 23(7): 21-26.
[ 4 ] 沈若兰, 黄英来, 温馨, 等. 基于Xception与ResNet50模型的蘑菇分类方法[J]. 黑河学院学报, 2020, 11(7): 181-184.
[ 5 ] 陈德刚, 艾孜尔古丽, 尹鹏博, 等. 基于改进Xception迁移学习的野生菌种类识别研究[J]. 激光与光电子学进展, 2021, 58(8): 245-254.
Chen Degang, Azragul, Yin Pengbo, et al. Research on identification of wild mushroom species based on improved Xception transfer learning [J]. Laser & Optoelectronics Progress, 2021, 58(8): 245-254.
[ 6 ] 张志刚, 余鹏飞, 李海燕, 等. 基于多尺度特征引导的细粒度野生菌图像识别[J]. 激光与光电子学进展, 2022, 59(12): 192-201.
Zhang Zhigang, Yu Pengfei, Li Haiyan, et al. Fine‑grained image recognition of wild mushroom based on multiscale feature guide [J]. Laser & Optoelectronics Progress, 2022, 59(12): 192-201.
[ 7 ] 钱嘉鑫, 余鹏飞, 李海燕, 等. 基于特征融合与注意力机制的野生菌细粒度分类[J]. 激光与光电子学进展, 2023, 60(4): 110-119.
Qian Jiaxin, Yu Pengfei, Li Haiyan, et al. Fine‑grained classification of wild mushroomd based on fusion and attention mechanism [J].Laser & Optoelectronics Progress, 2023, 60(4): 110-119.
[ 8 ] 张盾, 黄志开, 王欢, 等. 基于多尺度特征实现超参进化的野生菌分类研究与应用[J]. 图学学报, 2022, 43(4): 580-589.
[ 9 ] 王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程, 2021, 47(8): 1-13.
[10] 孙孟研, 王佳, 马睿, 等. 基于注意力机制的轻量化VGG玉米籽粒图像识别模型[J]. 中国粮油学报, 2024, 39(1): 189-195.
[11] 卫雅娜, 王志彬, 乔晓军, 等. 基于注意力机制与EfficientNet的轻量化水稻病害识别方法[J]. 中国农机化学报, 2022, 43(11): 172-181.
Wei Yana, Wang Zhibin, Qiao Xiaojun, et al. Lightweight rice disease identification method based on attention mechanism and EfficientNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 172-181.
[12] 甘雨, 郭庆文, 王春桃, 等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1): 203-211.
Gan Yu, Guo Qingwen, Wang Chuntao, et al. Recognizing crop pests using an improved EfficientNet model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 203-211.
[13] Tan M, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks [C]. 36th International Conference on Machine Learning. USA: Proceedings of Machine Learning Research, 2019: 6105-6114.
[14] Hu J, Shen L, Sun G. Squeeze‑and‑Excitation networks [C]. Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[15] Park J, Woo S, Lee J Y, et al. BAM: Bottleneck attention module [C]. European Conference on Computer Vision, 2018: 68-86.
[16] Wang Q, Wu B, Zhu P, et al. ECA—Net: Efficient channel attention for deep convolutional neural networks [C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11531-11539.
[17] Kingma D, Ba J. Adam: A method for stochastic optimization [C]. 3rd International Conference on Learning Representations, 2015: 1-13.
[18] Rother C, Kolaogorov V, Andrew B. “GrabCut” interactive foreground extraction using iterated graph cuts [J]. Proceedings of Siggraph, 2004(23): 309-314.
[19] Simonyan K, Zisserman A. Very deep convolutional networks for large‑scale image recognition [C]. Proceedings of the International Conference on Learning Representations, 2015.
[20] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[21] Sandler M, Howard A, Zhu M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[22] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[23] Ma N, Zhang X, Zhang H, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design [C]. Proceeding of European Conference on Computer Vision, 2018: 122-138.
|