English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 70-76.DOI: 10.13733/j.jcam.issn.2095-5553.2025.06.011

• 农业信息化工程 • 上一篇    下一篇

基于融合双注意力机制的野生菌图像识别方法

王江晴1,2,马春1,2,莫海芳1,2,帖军1,3,田娟娟1,3   

  1. (1. 中南民族大学计算机科学学院,武汉市,430074; 2. 湖北省制造企业智能管理工程技术研究中心,武汉市,430074; 3. 农业区块链与智能管理湖北省工程研究中心,武汉市,430074)
  • 出版日期:2025-06-15 发布日期:2025-05-21
  • 基金资助:
    国家民委中青年英才培养计划(MZR20007);湖北省技术创新计划重点研发专项(2023BAB087);新疆维吾尔自治区区域协同创新专项(科技援疆计划)(2022E02035);湖北省中医药管理局中医药科研项目(ZY2023M064)

Wild mushrooms image recognition method based on fused dual attention mechanism

Wang Jiangqing1, 2, Ma Chun1, 2, Mo Haifang1, 2, Tie Jun1, 3, Tian Juanjuan1, 3   

  1. (1. College of Computer Science, South‑Central Minzu University, Wuhan, 430074, China; 2. Hubei Provincial Engineering Center for Intelligent Management of Manufacturing Enterprises, Wuhan, 430074, China; 3. Hubei Provincial Engineering Research Center of Agricultural Blockchain and Intelligent Management, Wuhan, 430074, China)
  • Online:2025-06-15 Published:2025-05-21

摘要:

针对目前深度神经网络模型在野生菌识别任务中存在参数量过大导致在移动端部署难的问题,提出一种基于融合双注意力机制的BE—EfficientNet方法。采用轻量化模型EfficientNetB0作为基准模型,将BAM与ECA的融合双注意力模块BE替换EfficientNetB0核心模块MBConv中的SENet,使得模型不仅获取通道特征信息,还获取空间特征信息;同时引入Adam优化器,实现学习率自适应调节,提高分类精度。试验结果表明,改进后的BE—EfficientNet模型较基准模型EfficientNetB0准确率提高2.9%,参数量为4.40 MiB。此外,将提出的融合双注意力机制BE应用到VGG16、ResNet50、MobileNet V2、GoogLeNet和ShuffleNet V2模型上进行野生菌识别,在准确率上分别提高0.5%、0.8%、0.6%、0.5%和1.0%,表明双注意力机制BE具有一定的通用性。该方法可为在移动端部署野生菌识别提供新的方案。

关键词: 野生菌, 图像识别, 深度神经网络, 注意力机制, Adam优化器

Abstract:

At present, deep neural network models are widely used in wild mushroom identification tasks and have achieved good results. However, these neural network models still have the problem of large parameters and difficulty in deploying on mobile terminals. To address this problem, this paper proposes a BE—EfficientNet method based on the fusion of dual attention mechanisms. This method uses the lightweight model EfficientNetB0 as the benchmark model. First, the dual attention module BE, which is a fusion of BAM and ECA, replaces SENet in the core module MBConv of EfficientNetB0, so that the model not only obtains channel feature information, but also spatial feature information; at the same time, Adam optimization is introduced. The device realizes adaptive adjustment of learning rate and improves classification accuracy. Experimental results show that the improved BE—EfficientNet model is 2.9% more accurate than the baseline model EfficientNetB0, with a parameter size of 4.40 MiB. In addition, the proposed fused dual attention mechanism BE was applied to VGG16, ResNet50, MobileNet V2, GoogLeNet and ShuffleNet V2 models for wild bacteria identification, and the accuracy was improved by 0.5%, 0.8%, 0.6%, 0.5% and 1.0%, respectively,  indicating that the dual attention mechanism BE has certain versatility. This method can provide a new solution for deploying wild mushroom identification on the mobile terminal.

Key words: wild mushrooms, image recognition, deep neural network, attention mechanism, Adam optimizer

中图分类号: