English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 85-90.DOI: 10.13733/j.jcam.issn.2095-5553.2025.06.013

• 农业信息化工程 • 上一篇    下一篇

基于SSA—SVM算法的成熟黄花菜图像分割

姚涛1,谈志鹏2,程娥2,武晔秋1,吴利刚1   

  1. (1. 山西大同大学机电工程学院,山西大同,037003; 2. 河北工业大学机械工程学院,天津市,300401)
  • 出版日期:2025-06-15 发布日期:2025-05-21
  • 基金资助:
    山西省基础研究计划项目(202303021212244);山西省高等学校教学改革创新项目(J20241153);大同市科技计划项目(2023015,2023006)

Mature yellow daylily image segmentation based on SSA—SVM algorithm

Yao Tao1, Tan Zhipeng2, Cheng E2, Wu Yeqiu1, Wu Ligang1   

  1. (1. School of Mechanical and Electrical Engineering, Shanxi Datong University, Datong, 037003, China; 
    2. School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China)
  • Online:2025-06-15 Published:2025-05-21

摘要:

自然环境下,由于光照不均,黄花菜与茎叶、土壤等背景对比度低,图像分割准确率低、定位困难,基于此,提出一种基于麻雀搜索算法(SSA)融合支持向量机(SVM)的成熟黄花菜图像分割方法。首先,采用RGB、HSV颜色模型构造样本特征数据集,对成熟黄花菜分割模型进行训练。其次,基于SSA优化SVM中的高斯径向基核函数参数和惩罚项系数,获得最优分类模型,经过二值化、形态学开运算及填充孔洞、去除噪声等图像形态学操作,完成图像分割。最后,针对光照较弱的黄花菜图像欠分割状况,对分类结果实施HSV模型阈值分割操作。试验结果表明:基于SSA—SVM算法的图像分割方法平均分割精度达到97.057%,处理时间为1.822 s。

关键词: 黄花菜, 麻雀搜索法, 支持向量机, 图像分割, 颜色模型

Abstract:

Due to uneven lighting and low contrast with backgrounds such as stems, leaves, and soil in natural environments, the image segmentation accuracy is low and localization is difficult, a mature daylily image segmentation method based on sparrow search algorithm (SSA) and support vector machine (SVM) was proposed. Firstly, the sample feature dataset was construct by using RGB and HSV color models, which was used to train the mature daylily segmentation model. Based on SSA optimization of SVM Gaussian radial basis kernel function parameters and penalty coefficients, the optimal classification model was obtained. After binarization, morphological opening, hole filling, noise removal and other image morphological operations, image segmentation was finally completed. Aiming at the under segmentation of daylily images with weak lighting, the HSV model threshold segmentation operation to the classification results was implemented. The experimental results show that the average segmentation accuracy  of the image segmentation method based on SSA—SVM algorithm reaches 97.057%, and the processing time reaches 1.822 s.

Key words: daylily, sparrow search algorithm, support vector machine, image segmentation, color models

中图分类号: