[1] 张明宇, 杨晶, 安帅霖. 不同土壤水分含量对生菜生长特性的影响[J]. 安徽农业科学, 2021, 49(5): 59-61.Zhang Mingyu, Yang Jing, An Suailin. Effects of different soil water content on lettuce growth characteristics [J]. Journal of Anhui Agricultural Sciences, 2021, 49(5): 59-61.
[2] Franzoni G, Cocetta G, Ferrante A. Effect of glutamic acid foliar applications on lettuce under water stress [J]. Physiology and Molecular Biology of Plants, 2021, 27(5):1059-1072.
[3] 张智韬, 边江, 韩文霆, 等. 剔除土壤背景的棉花水分胁迫无人机热红外遥感诊断[J]. 农业机械学报, 2018, 49(10): 250-260.
Zhang Zhitao, Bian Jiang, Han Wenting, et al. Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil background [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 250-260.
[4] 杨明欣, 高鹏, 陈文彬, 等. 基于机器学习的油青菜心水分胁迫研究[J]. 华南农业大学学报, 2021, 42(5): 117-126.
Yang Mingxin, Gao Peng, Chen Wenbin, et al. Research of brassica chinensis var. parachinensis under water stress based on machine learning [J]. Journal of South China Agricultural University, 2021, 42(5): 117-126.
[5] 毛罕平, 徐贵力, 李萍萍. 番茄缺素叶片的图像特征提取和优化选择研究闭[J]. 农业工程学报, 2003, 19(2): 133-136.
Mao Hanping, Xu Guili, Li Pingping. Study on image feature extraction and optimization selection of tomato leaf lacking element [J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(2): 133-136.
[6] 章云, 周竹, 周素茵. 基于混合特征与最小二乘支持向量机的山核桃鲜果识别[J]. 中南林业科技大学学报, 2016, 36(11): 137-143.
Zhang Yun, Zhou Zhu, Zhou Suyin. Segmentation method for fresh hickory nut recognition based on mixed features and LS-SVM classifier [J]. Journal of Central South University of Forestry & Technology, 2016, 36(11): 137-143.
[7] Karimi Y, Prasher S O, Patel R M, et al. Application of support vector machine technology for weed andnitrogen stress detection in corn [J]. Computers and Electronics in Agriculture, 2006, 51(1-2): 99-109.
[8] 田有文, 张长水, 李成华. 支持向量机在植物病斑形状识别中的应用研究[J]. 农业工程学报, 2004(3): 134-136.
Tian Youwen, Zhang Changshui, Li Chenghua. Research on the application of SVM in the shape recognition of plant disease spot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2004(3): 134-136.
[9] 杨永民, 邱建秀, 苏红波, 等. 基于热红外的四种土壤含水量估算方法对比[J]. 红外与毫米波学报, 2018, 37(4): 459-467, 476.〖JP2〗Yang Yongmin, Qiu Jianxiu, Su Hongbo, et al. Estimation of surface soil moisture based on thermal remote sensing: Intercomparison of four methods [J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 459-467, 476.〖JP〗
[10] Aubrecht D M, Helliker B R, Goulden M L, et al. Continuous, longterm, highfrequency thermal imaging of vegetation: Uncertainties and recommended best practices [J]. Agricultural and Forest Meteorology, 2016, 228: 315-326.
[11] Kim Y, Still C J, Roberts D A, et al. Thermal infrared imaging of conifer leaf temperatures: Comparison to thermocouple measurements and assessment of environmental influences [J]. Agricultural and Forest Meteorology, 2018, 248: 361-371.
[12] 孙圣, 张劲松, 孟平, 等. 基于无人机热红外图像的核桃园土壤水分预测模型建立与应用[J]. 农业工程学报, 2018, 34(16): 89-95.
Sun Sheng, Zhang Jinsong, Meng Ping, et al. Establishment and application of prediction model of soil water in walnut orchard based on unmanned aerial vehicle thermal infrared imagery [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 89-95.
[13] 邓力元, 周浩宇, 毛凌青, 等. 基于无人机热成像的作物冠层温度测量系统[J]. 现代计算机, 2021(19): 85-88, 93.
Deng Liyuan, Zhou Haoyu, Mao Lingqing, et al. Crop canopy temperature measurement system based on UAV thermal imaging [J]. Modern Computer, 2021(19): 85-88, 93.
[14] 姚志华, 陈俊英, 张智韬, 等. 基于无人机热红外遥感的冬小麦水分胁迫研究[J]. 节水灌溉, 2019(3): 12-17.〖JP2〗Yao Zhihua, Chen Junying, Zhang Zhitao, et al. Winter wheat water stress research based on thermal infrared remote sensing of unmanned aerial vehicle [J].〖JP〗 Water Saving Irrigation, 2019(3): 12-17.
[15] 谢慧婷. 基于红外热成像技术的生菜缺水指标的研究[D]. 福州: 福建农林大学, 2016.Xie Huiting. Identification of lettuce water indicator using infrared thermography [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
[16] 朱文静, 陈华, 李林, 等. 基于红外热成像边缘检测算法的小麦叶锈病分级研究[J]. 农业机械学报, 2019, 50(4): 36-41, 48.
Zhu Wenjing, Chen Hua, Li Lin, et al. Grading of wheat leaf rust based on edge detection ofInfrared thermal imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 36-41, 48.
[17] 万广, 陈忠辉, 方洪波, 等. 基于特征融合的随机森林模型茶鲜叶分类[J]. 华南农业大学学报, 2021, 42(4): 125-132.
Wan Guang,Chen Zhonghui, Fang Hongbo, et al. Classification of fresh tea leaf based on random forest model by feature fusion [J]. Journal of South China Agricultural University, 2021, 42(4): 125-132.
[18] 刘玲, 郑建国. 一种基于随机森林的组合分类算法设计与应用[J]. 电子设计工程, 2020, 28(16): 54-57.Liu Ling, Zheng Jianguo. Design and application of a combinatorial classification algorithm based on random forest [J]. Electronic Design Engineering, 2020, 28(16): 54-57.
[19] Li D, Shi R, Yao N, et al. Realtime patientspecific ECG arrhythmia detection by quantum genetic algorithm of least squares twin SVM [J]. Journal of Beijing Institute of Technology, 2020, 29(1): 29-37.
[20] 魏锋涛, 卢凤仪. 融合核函数在改进径向基代理模型中的应用[J]. 计算机工程与应用, 2019, 55(7): 58-65.Wei Fengtao, Lu Fengyi. Application of hybrid kernel function in improved radial basis function metamodel [J]. Computer Engineering and Applications, 2019, 55(7): 58-65.
|