[1] 戴小枫, 叶志华, 曹雅忠, 等. 浅析我国农作物病虫草鼠害成灾特点与减灾对策[J]. 应用生态学报, 1999, 10(1): 119-122.Dai Xiaofeng, Ye Zhihua, Cao Yazhong, et al. Disastercausing characters and disasterreducing strategies of crop pests in China [J]. Chinese Journal of Applied Ecology, 1999, 10(1): 119-122.
[2] 全国农业技术推广服务中心. 2022年水稻重大病虫害防控技术方案[EB/OL]. http://www.moa.gov.cn/ztzl/ddymdzfhjs/jszd_29063/202202/t20220224_6389603.htm, 2022-02-24.
[3] 岑喆鑫, 李宝聚, 石延霞, 等. 基于彩色图像颜色统计特征的黄瓜炭疽病和褐斑病的识别研究[J]. 园艺学报, 2007, 34(6): 1425-1430.Cen Zhexin, Li Baoju, Shi Yanxia, et al. Discrimination of cucumber anthracnose and cucumber brown speck base on color image statistical characteristics [J]. Acta Horticulturae Sinica, 2007, 34(6): 1425-1430.
[4] 付坤亚, 张文宇, 曹宏鑫, 等. 基于光谱的作物病虫害监测研究进展[J]. 中国农业科技导报, 2014, 16(5): 90-98.Fu Kunya, Zhang Wenyu, Cao Hongxin, et al. Research progress on crop diseases ant insect pests monitoring based on spectrum [J]. Journal of Agricultural Science and Technology, 2014, 16(5): 90-98.
[5] 陈志谊, 刘永锋, 刘邮洲, 等. 植物病害生防芽孢杆菌研究进展[J]. 江苏农业学报, 2012, 28(5): 999-1006.Chen Zhiyi, Liu Yongfeng, Liu Youzhou, et al. Research progress in biocontrol of Bacillus spp. against plant diseases [J]. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 999-1006.
[6] Kruse O M O, PratsMontalbán J M, Indahl U G, et al. Pixel classification methods for identifying and quantifying leaf surface injury from digital images [J]. Computers and Electronics in Agriculture, 2014, 108: 155-165.
[7] Zhou R, Kaneko S, Tanaka F, et al. Disease detection of cercospora leaf spot in sugar beet by robust template matching [J]. Computers and Electronics in Agriculture, 2014, 108: 58-70.
[8] 邵泽中, 姚青, 唐健, 等. 面向移动终端的农业害虫图像智能识别系统的研究与开发[J]. 中国农业科学, 2020, 53(16): 3257-3268.Shao Zezhong, Yao Qing, Tang Jian, et al. Research and development of the intelligent identification system of agricultural pests for mobile terminals [J]. Scientia Agricultura Sinica, 2020, 53(16): 3257-3268.
[9] 崔艳丽, 程鹏飞, 董晓志, 等. 温室植物病害的图像处理及特征值提取方法的研究——基于色度的特征值提取研究[J]. 农业工程学报, 2005, 21(S1): 32-35.Cui Yanli, Cheng Pengfei, Dong Xiaozhi, et al. Image processing and extracting color features of greenhouse diseased leaf [J]. Transactions of Chinese Society of Agricultural Engineering, 2005, 21(S1): 32-35.
[10] 宋凯, 任晓哲. 基于YCbCr色彩空间的玉米叶部病斑的图像分割[J]. 农业工程学报, 2008, 24(2): 202-205.Song Kai, Ren Xiaozhe. Image segmentation of disease speckle of corn leaf based on YCbCr color space [J]. Transactions of Chinese Society of Agricultural Engineering, 2008, 24(2): 202-205.
[11] 田凯, 张连宽, 熊美东, 等. 基于叶片病斑特征的茄子褐纹病识别方法[J]. 农业工程学报, 2016, 32(1): 184-189.
Tian Kai, Zhang Liankuan, Xiong Meidong, et al. Recognition of phomopsis vexans in solanum melongena based on leaf disease spot features [J]. Transactions of Chinese Society of Agricultural Engineering, 2016, 32(1): 184-189.
[12] Ma J, Du K, Zhang L, et al. A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing [J]. Computers and Electronics in Agriculture, 2017, 142: 110-117.
[13] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
[14] 宋晨勇, 白浩然, 孙伟浩, 等. 基于GoogleNet改进模型的苹果叶病诊断系统设计[J]. 中国农机化学报, 2021, 42(7): 148-155.
Song Chenyong, Bai Haoran, Sun Weihao, et al. Design of apple leaf disease diagnosis system based on GoogleNet improved model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 148-155.
[15] 王国伟, 刘嘉欣. 基于卷积神经网络的玉米病害识别方法研究[J]. 中国农机化学报, 2021, 42(2): 139-145.
Wang Guowei, Liu Jiaxin. Research on corn disease recognition method based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 139-145.
[16] Lu J, Hu J, Zhao G, et al. An infield automatic wheat disease diagnosis system [J]. Computers and Electronics in Agriculture, 2017, 142: 369-379.
[17] Lu Y, Yi S, Zeng N, et al. Identification of rice diseases using deep convolutional neural networks [J]. Neurocomputing, 2017, 267: 378-384.
[18] Ma J, Du K, Zheng F, et al. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network [J]. Computers and Electronics in Agriculture, 2018, 154: 18-24.
[19] 苏一峰, 杜克明, 李颖, 等. 基于物联网平台的小麦病虫害诊断系统设计初探[J]. 中国农业科技导报, 2016, 18(2): 86-94.
Su Yifeng, Du Keming, Li Ying, et al. Preliminary research on diagnosis system design of wheat diseases and pests based on the Internet of Things [J]. Journal of Agricultural Science and Technology, 2016, 18(2): 86-94.
[20] 赵建敏, 李艳, 李琦, 等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学, 2018, 46(24): 251-255.Zhao Jianmin, Li Yan, Li Qi, et al. Potato leaf disease identification system based on convolution neural network [J]. Jiangsu Agricultural Sciences, 2018, 46(24): 251-255.
[21] 李昊, 刘海隆, 刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报, 2021, 42(9): 194-208.
Li Hao, Liu Hailong, Liu Shenglong. Research on dynamic identification system of citrus diseases and pests based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 194-208.
|