中国农机化学报 ›› 2022, Vol. 43 ›› Issue (10): 157-166.DOI: 10.13733/j.jcam.issn.2095-5553.2022.10.023
郭文娟1, 2,冯全2,李相周2
出版日期:
2022-10-15
发布日期:
2022-09-19
基金资助:
Guo Wenjuan, Feng Quan, Li Xiangzhou.
Online:
2022-10-15
Published:
2022-09-19
摘要: 农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。
中图分类号:
郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166.
Guo Wenjuan, Feng Quan, Li Xiangzhou.. Research progress of convolutional neural network model based on crop disease detection and recognition[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166.
[1] Carlson G A. A decision theoretic approach to crop disease prediction and control [J]. American Journal of Agricultural Economics, 1970, 52(2): 216-223. [2] Hiary H A, Ahmad S B, Reyalat M, et al. Fast and accurate detection and classification of plant diseases [J]. International Journal of Computer Applications, 2011, 17(3): 31-38. [3] Li N, Xiao Y, Shen L, et al. Smart agriculture with an automated Iotbased greenhouse system for local communities [J]. Advances in Internet of Things, 2019, 9(2): 15-31. [4] 张善文, 张传雷. 基于局部判别映射算法的玉米病害识别方法[J]. 农业工程学报, 2014, 30(11): 167-172. Zhang Shanwen, Zhang Chuanlei. Maize disease recognition based on local discriminant algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 167-172. [5] Cui D, Zhang Q, Li M, et al. Image processing methods for quantitatively detecting soybean rust from multispectral images [J]. Biosystems Engineering, 2010, 107(3): 186-193. [6] Mainkar P M, Ghorpade S, Adawadkar M. Plant leaf disease detection and classification using image processing techniques [J]. International Journal of Innovative and Emerging Research in Engineering, 2015, 2(4): 139-144. [7] Mondal D, Chakraborty A, Kole D K, et al. Detection and classification technique of Yellow Vein Mosaic Virus disease in okra leaf images using leaf vein extraction and Naive Bayesian classifier [C]. International Conference on Soft Computing Techniques & Implementations. IEEE, 2016: 166-171. [8] 刘立波. 基于图像的水稻叶部病害诊断技术研究[D]. 北京: 中国农业科学院, 2010. Liu Libo. Research on imagebased diagnosis technology of rice leaf diseases [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. [9] Pujari J D, Yakkundimath R, Byadgi A S. NeuroKNN classification system for detecting fungal disease on vegetable crops using local binary patterns [J]. Agricultural Engineering International: The CIGR ejournal, 2014, 16(4): 299-308. [10] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks [C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269. [11] Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks [J]. Pattern Recognition, 2015. [12] 林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37. Lin Jingdong, Wu Xinyi, Chai Yi, et al. Structure optimization of convolutional neural networks: A survey [J]. Acta Automatica Sinica, 2020, 46(1): 24-37. [13] Singh B, Davis L S. An analysis of scale invariance in object detection snip [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3578-3587. [14] Simonyan K, Zisserman A. Very deep convolutional networks for large scale image recognition [J]. ArXiv Preprint, 2014. [15] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. [16] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift [J]. ArXiv Preprint, 2015. [17] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. [18] Szegedy C, Ioffe S, Vanhoucke V, et al. Inceptionv4 inception resnet and the impact of residual connections on learning [J]. ArXiv Preprint, 2016. [19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. [20] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. [21] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. ArXiv Preprint, 2017. [22] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. [23] Li X, Wang W, Hu X, et al. Selective kernel networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. [24] 周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324. Zhou Changjian, Song Jia, Xiang Wensheng. Progress in artificial intelligencebased crop disease identification [J]. Journal of Plant Protection, 2022, 49(1): 316-324. [25] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18. Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. [26] Mohanty S P, Hughes D P, Salathe M. Using deep learning for image based plant disease detection [J]. Frontiers in Plant Science, 2016, 22(7): 1-10. [27] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. Sun Jun, Tan Wenjun, Mao Hanping, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. [28] 何自芬, 黄俊璇, 刘强, 等. 基于非对称混洗卷积神经网络的苹果叶部病害分割[J]. 农业机械学报, 2021, 52(8): 221-230. He Zifen, Huang Junxuan, Liu Qiang, et al. High precision identification of apple leaf diseases based on asymmetric shuffle convolution [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 221-230. [29] Zeng W, Li M. Crop leaf disease recognition based on selfattention convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 172(1): 105341. [30] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191. [31] 钟昌源, 胡泽林, 李淼, 等. 基于分组注意力模块的实时农作物病害叶片语义分割模型[J]. 农业工程学报, 2021, 37(4): 208-215. Zhong Changyuan, Hu Zelin, Li Miao, et al. Realtime semantic segmentation model for crop disease leaves using group attention module [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 208-215. [32] 王东方, 汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报, 2021, 37(4): 199-207. Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residual networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 199-207. [33] Kawasaki Y, Uga H, Kagiwada S, et al. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks [J]. International Symposium on Visual Computing, 2015: 638-645. [34] Ramcharan A, Baranowski, McCloskey P, et al. Deep learning for image based cassava disease detection [J]. Frontiers in Plant Science, 2017, 23(10): 1-7. [35] Ferentinos K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture, 2018, 145: 311-318. [36] Xing Shuli, Lee Marely, LeeKeunkwang. Citrus pests and diseases recognition model using weakly dense connected convolution network [J]. Sensors, 2019, 19, 3195. [37] 曾伟辉, 李淼, 李增, 等. 基于高阶残差和参数共享反馈卷积神经网络的农作物病害检测与识别[J]. 电子学报, 2019, 47(9): 1979-1986. Zeng Weihui, Li Miao, Li Zeng, et al. Highorder residual and parametersharing feedback convolutional neural network for crop disease recognition [J]. Acta Electronica Sinica, 2019, 47(9): 1979-1986. [38] 黄林生, 罗耀武, 杨小冬, 等. 基于注意力机制和多尺度残差网络的农作物病害检测与识别[J]. 农业机械学报, 2021, 52(10): 264-271. Huang Linsheng, Luo Yaowu, Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multiscale residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271. [39] 王鑫鹏, 王晓强, 林浩, 等. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57. Wang Xinpeng, Wang Xiaoqiang, Lin Hao, et al. Review on the improvement of typical object detection algorithms in deep learning [J]. Computer Engineering and Applications, 2022, 58(6): 42-57. [40] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587. [41] Dai J, Li Y, He K, et al. R-FCN: Object detection via regionbased fully convolutional networks [C]. Advances in neural information processing systems, 2016: 379-387. [42] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [43] Liu W, Anguelov D, Erhan D, et al. SSd: Single shot multibox detector [C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37. [44] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的小目标检测算法综述[J/OL]. 计算机工程: 1-17 [2022-07-08]. DOI:10.19678/j.issn.1000-3428.0062725. [45] Fuentes A, Yoon S, Kim S C, et al. A robust deeplearningbased detector for realtime tomato plant diseases and pests recognition [J]. Sensors, 2017, 17(9): 2022. [46] Selvaraj M G, Vergara A, Ruiz H, et al. AI powered banana diseases and pest detection [J]. Plant Methods, 2019, 15: 92. [47] Arsenovic M, Karanovic M, Sladojevic S, et al.Solving current limitations of deep learning based approaches for plant disease detection [J]. Symmetry, 2019, 11: 939. [48] 刘阗宇, 冯全. 基于卷积神经网络的葡萄叶片检测[J]. 西北大学学报 (自然科学版), 2017, 47(4): 505-512. Liu Tianyu, Feng Quan. Detecting grape leaves based on convolutional neural network [J]. Journal of Northwest University (Natural Science Edition), 2017, 47(4): 505-512. [49] 刘阗宇, 冯全, 杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报, 2018, 49(3): 73-83. Liu Tianyu, Feng Quan, Yang Sen. Detecting grape diseases based on Convolutional neural network [J]. Journal of Northeast Agricultural University, 2018, 49(3): 73-83. [50] 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185. Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185. [51] 樊湘鹏, 周建平, 许燕. 基于改进区域卷积神经网络的田间玉米叶部病害识别[J]. 华南农业大学学报, 2020, 41(6): 82-91. Fan Xiangpeng, Zhou Jianping, Xu Yan. Recognition of field maize leaf diseases based on improved regional convolutional neural network [J]. Journal of South China Agricultural University, 2020, 41(6): 82-91. [52] 李鑫然, 李书琴, 刘斌. 基于改进 Faster R_CNN 的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304. Li Xinran, Li Shuqin, Liu Bin. Apple leaf disease detection model based on improved Faster R_CNN[J]. Computer Engineering, 2021, 47(11): 298-304. [53] 叶中华, 赵明霞, 贾璐. 复杂背景农作物病害图像识别研究[J]. 农业机械学报, 2021, 52(S1): 118-124, 147. Ye Zhonghua, Zhao Mingxia, Jia Lu. Image recognition of crop diseases in complex background [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 118-124, 147. [54] Jiang P, Chen Y, Liu B, et al. Realtime detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. IEEE Access, 2019, 7: 59069-59080. [55] 俞佩仕. 水稻茎基部病害图像智能采集与病斑检测系统的设计与实现[D]. 杭州: 浙江理工大学, 2019. Yu Peishi. Design and implementation of rice stem base disease image intelligent acquisition and disease spot detection system [D]. Hangzhou: Zhejiang SciTech University, 2019. [56] Liu J, Wang X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network [J]. Frontiers in Plant Science, 2020, 11: 898. [57] Liu J, Wang X. Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model [J]. Plant Methods, 2020, 16: 83. [58] Liang Q, Xiang S, Hu Y, et al. PD2SE-net: computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157(1): 518-529. [59] Jose Gm E, Renato A K, Jose A V. Deep learning for classification and severity estimation of coffee leaf biotic stress [J]. Computers and Electronics in Agriculture, 2020, 169, 105162. [60] Xiang S, Liang Q, Sun W, et al. L-CSMS: novel lightweight network for plant disease severity recognition [J]. Journal of Plant Diseases and Protection, 2021, 128: 557-569. [61] 鲍文霞, 林泽, 胡根生, 等. 基于RSTCNN的小麦叶片病害严重度估计[J]. 农业机械学报, 2021, 52(12): 242-252. Bao Wenxia, Lin Ze, Hu Gensheng, et al. Severity estimation of wheat leaf diseases based on RSTCNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 242-252. [62] 万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 219-221. Wan Junjie, Qi Liju, Lu Zhongao, et al. Recognition and grading of diseases and pests in orchard by GoogLeNet based on transfer learning [J]. Journal of China Agricultural University, 2021, 26(11): 219-221. [63] 郭小清, 范涛杰, 舒欣. 基于改进MultiScale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved MultiScale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169. [64] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. Wang Meihua, Wu Zhenxin, Zhou Zuguang. Finegrained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247. |
[1] | 孙松丽, 温宏愿, 刘宾龄, 钟锦扬, 毛政兴. 基于ROS和深度学习的杏鲍菇智能分选系统设计[J]. 中国农机化学报, 2023, 44(8): 95-102. |
[2] | 刘敏, 周丽. 基于多尺度特征融合网络的苹果病害叶片检测[J]. 中国农机化学报, 2023, 44(8): 184-190. |
[3] | 余胜, 谢莉. 基于迁移学习和卷积视觉转换器的农作物病害识别研究[J]. 中国农机化学报, 2023, 44(8): 191-197. |
[4] | 李宗南, 蒋怡, 王思, 李源洪, 黄平, 魏鹏. 基于YOLOv5模型的飞蓬属入侵植物目标检测[J]. 中国农机化学报, 2023, 44(7): 200-206. |
[5] | 王春桃, , , , 梁炜健, 郭庆文, 钟浩, 甘雨, 肖德琴, , . 农业害虫智能视觉检测研究综述[J]. 中国农机化学报, 2023, 44(7): 207-213. |
[6] | 陈维美, 刘馨蔚, 王铁伟, 徐文凯, 李娟. 基于两级融合深度学习的松材线虫病识别[J]. 中国农机化学报, 2023, 44(7): 214-219. |
[7] | 李平, 马玉琨, 李艳翠, 冯继克, 赵明富. 基于迁移学习的小麦籽粒品种识别研究[J]. 中国农机化学报, 2023, 44(7): 220-228. |
[8] | 李明, 丁智欢, 赵靖暄, 陈思铭, 李文勇, 杨信廷. 基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法[J]. 中国农机化学报, 2023, 44(5): 63-70. |
[9] | 杨承磊, 兰玉彬, 王庆雨, 别晓婷, 单常峰, 王国宾, . 神经网络在温室小气候预测中的应用[J]. 中国农机化学报, 2023, 44(5): 89-99. |
[10] | 周显沁, 韩震宇, 刘成源. 基于改进卷积神经网络与图像处理的蚕茧识别方法[J]. 中国农机化学报, 2023, 44(5): 100-106. |
[11] | 王磊, 袁英, 高玲. 基于改进多元宇宙算法的番茄病害图像识别[J]. 中国农机化学报, 2023, 44(5): 176-181. |
[12] | 徐衍向, 张敬智, 兰玉彬, , 孙越梅, 韩鑫, 白京波. 于红外热成像和机器学习的作物早期病害识别研究进展[J]. 中国农机化学报, 2023, 44(5): 188-197. |
[13] | 付豪, , 赵学观, 翟长远, , 郑康, 郑申玉, 王秀. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207. |
[14] | 段宇飞, 董庚, 孙记委, 王焱清, . 基于SE-ResNet网络的油茶果果壳与茶籽分选模型[J]. 中国农机化学报, 2023, 44(4): 89-95. |
[15] | 李岩舟, 何艳洲, 覃锋, 钱万强, 吴媚, 乔曦, . 基于卷积神经网络的互花米草识别研究[J]. 中国农机化学报, 2023, 44(4): 159-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296