[1] 陈文汉. 我国经济林木种植存在的问题及对策[J]. 江西农业, 2018(2): 95.
[2] 蒲蕴. 林业生态工程技术与森林虫害预防措施研究[J]. 农业开发与装备, 2021(10): 239-240.
[3] 田有文, 程怡, 王小奇, 等. 基于高光谱成像的苹果虫害检测特征向量的选取[J]. 农业工程学报, 2014, 30(12): 132-139.
[4] 刘子毅. 基于图谱特征分析的农业虫害检测方法研究[D]. 杭州: 浙江大学, 2017.
[5] 邓小玲, 林亮生, 兰玉彬. 基于调制荧光检测技术的柑橘黄龙病诊断[J]. 华南农业大学学报, 2016, 37(2): 113-116.
[6] 张军国, 冯文钊, 胡春鹤, 等. 无人机航拍林业虫害图像分割复合梯度分水岭算法[J]. 农业工程学报, 2017, 33(14): 93-99.
[7] 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162.
[8] 李衡霞, 龙陈锋, 曾蒙, 等. 一种基于深度卷积神经网络的油菜虫害检测方法[J].湖南农业大学学报(自然科学版), 2019, 45(5): 560-564.
[9] Tetila E C, Machado B B, Menezes G V, et al. A deeplearning approach for automatic counting of soybean insect pests [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(10): 1837-1841.
[10] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv eprints, 2018.
[11] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, RealTime Object Detection [J]. IEEE, 2016.
[12] Wang C Y, Liao H, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2020.
[13] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8759-8768.
[14] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[15] Tan M, Pang R, Le Q V. EfficientDet: Scalable and efficient object detection [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020.
[16] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[17] 苏鸿, 温国泉, 谢玮, 等. 基于区域卷积神经网络模型的广西柑橘病虫害识别方法研究[J]. 西南农业学报, 2020, 33(4): 805-810.
[18] Kingma D, Ba J. Adam: A method for stochastic optimization [J]. Computer Science, 2014.
[19] Wu X, Zhan C, Lai Y K, et al. IP102: A largescale benchmark dataset for insect pest recognition [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.
[20] 候瑞环, 杨喜旺, 王智超, 等. 一种基于YOLOv4-TIA的林业害虫实时检测方法[J/OL]. 计算机工程: 1-8[2022-02-28].
|