[ 1 ] 兰玉彬, 林泽山, 王林琳, 等. 基于文献计量学的智慧果园研究进展与热点分析[J]. 农业工程学报, 2022, 38(21): 127-136.
Lan Yubin, Lin Zeshan, Wanglinlin, et al. Research progress and hotspots of smart orchard based on bibliometrics [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(21): 127-136.
[ 2 ] 马瑞峻, 陈瑜, 张小花, 等. 苹果机械化采收发展历程、模式及其技术现状[J]. 中国农机化学报, 2024, 45(1): 301-306.
Ma Ruijun, Chen Yu, Zhang Xiaohua, et al. Development process, mode and technology status of apple mechanized harvesting [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 301-306.
[ 3 ] 陈青, 殷程凯, 郭自良, 等. 苹果采摘机器人关键技术研究现状与发展趋势[J]. 农业工程学报, 2023, 39(4): 1-15.
Chen Qing, Yin Chengkai, Guo Ziliang, et al. Current status and future development of the key technologies for apple picking robots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(4): 1-15.
[ 4 ] 唐栩超. 果实图像识别新方法在苹果采摘机器人中的应用研究[J]. 中国新技术新产品, 2023(4): 25-27.
[ 5 ] 江梅, 孙飒爽, 何东健, 等. 融合K-means聚类分割算法与凸壳原理的遮挡苹果目标识别与定位方法[J]. 智慧农业, 2019, 1(2): 45-54.
Jiang Mei, Sun Sashuang, He Dongjian, et al. Recognition and localization method of occluded apples based on K-means clustering segmentation algorithm and convex hull theory [J]. Smart Agriculture, 2019, 1(2): 45-54.
[ 6 ] 王艳, 祁萌. 基于遗传算法和阈值分割的夜间苹果识别方法[J]. 机械设计与研究, 2020, 36(3): 220-225, 233.
Wang Yan, Qi Meng. Apple recognition at night based on genetic algorithm and threshold segmentation [J]. Machine Design and Research, 2020, 36(3): 220-225, 233.
[ 7 ] Liu X, Zhao D, Jia W, et al. A detection method for apple fruits based on color and shape features [J]. IEEE Access, 2019(99): 1.
[ 8 ] Tripathi R C, Guo Y, Liu Y, et al. A review on deep learning for visual understanding [J]. ACADEMICIA: An International Multidisciplinary Research Journal, 2021, 11(12).
[ 9 ] Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[10] 祁金文. 基于YOLOv5的苹果目标识别方法研究[J]. 电脑编程技巧与维护, 2022(8): 137-139.
[11] Ji Wei, Pan Yu, Xu Bo, et al. A real‑time apple targets detection method for picking robot based on ShufflenetV2-YOLOX [J]. Agriculture, 2022, 12(6).
[12] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag‑of‑freebies sets new state‑of‑the‑art for real‑time object detectors [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[13] 刘浩翰, 樊一鸣, 贺怀清, 等. 改进YOLOv7-tiny的目标检测轻量化模型[J]. 计算机工程与应用, 2023, 59(14): 166-175.
Liu Haohan, Fan Yiming, He Huaiqing, et al. Improved YOLOv7-tiny's object detection lightweight model [J]. Computer Engineering and Applications, 2023, 59(14): 166-175.
[14] Pattanaik A, Balabantaray R C. Enhancement of license plate recognition performance using Xception with Mish activation function [J]. Multimedia Tools and Applications, 2022, 82(11): 1-23.
[15] Wu Tingting, Song Chunhe, Zeng Peng. Model pruning based on filter similarity for edge device deployment [J]. Frontiers in Neurorobotics, 2023, 17.
[16] Wu Shengwang, Li Zhongmin, Li Shiji, et al. Static gesture recognition algorithm based on improved YOLOv5s [J]. Electronics, 2023, 12(3).
[17] Cheng Qianqing, Li Xiuhe, Zhu Bin, et al. Drone detection method based on MobileViT and CA-PANet [J]. Electronics, 2023, 12(1).
[18] Chen Junyang, Liu Hui, Zhang Yating, et al. A multiscale lightweight and efficient model based on YOLOv7: Applied to citrus orchard [J]. Plants, 2022, 11(23).
[19] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 1577-1586.
[20] Jang J G, Quan C, Lee H D, et al. Falcon: Lightweight and accurate convolution based on depthwise separable convolution [J]. Knowledge and Information Systems, 2023, 65(5): 2225-2249.
[21] Oymak S, Soltanolkotabi M. Learning a deep convolutional neural network via tensor decomposition [J]. Information and Inference: A Journal of the IMA, 2021, 10(3): 1031-1071.
|