[1] 赵桂芝, 赵华洋, 李理, 等. 基于混沌-SVMPSO的粮食产量预测方法研究[J]. 中国农机化学报, 2019, 40(1): 179-183.
Zhao Guizhi, Zhao Huayang, Li Li, et al. Study on method for food yield prediction based on chaotic TheorySVMPSO [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 179-183.
[2] 胡程磊, 刘永华, 高菊玲. 基于IPSOBP模型的粮食产量预测方法研究[J]. 中国农机化学报, 2021, 42(3): 136-141.
Hu Chenglei, Liu Yonghua, Gao Juling. Research on prediction method of grain yield based on IPSOBP model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 136-141
[3] 施瑶, 陈昭. 基于SAFA优化LSSVM的粮食产量预测[J]. 中国农机化学报, 2019, 40(3): 144-148.
Shi Yao, Chen Zhao. Prediction of grain yield based on LSSVM optimized by SAFA [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 144-148.
[4] Donohue R J, Lawes R A, Mata G, et al. Towards a national, remotesensingbased model for predicting fieldscale crop yield [J]. Field Crops Research, 2018, 227: 79-90.
[5] 韩书成, 李丹, 熊建华, 等. 广州市耕地资源数量变化及其对粮食安全的影响[J]. 农林经济管理学报, 2016, 15(6): 648-654.
Han Shucheng, Li Dan, Xiong Jianhua, et al. Changes in cultivated land amount and their impacts on food security in Guangzhou [J]. Journal of AgroForestry Economics and Management, 2016, 15(6): 648-654.
[6] 孙东升, 梁仕莹. 我国粮食产量预测的时间序列模型与应用研究[J]. 农业技术经济, 2010(3): 97-106.
Sun Dongsheng, Liang Shiying. Research on time series model and application of grain yield prediction in my country [J]. Journal of Agrotechnical Economics, 2010(3): 97-106.
[7] Li Bingjun, Zhang Yifan, Zhang Shuhua, et al. Prediction of grain yield in Henan Province based on Grey BP Neural Network Model [J]. Discrete Dynamics in Nature and Society, 2021, 2021.
[8] Friedman J H. Greedy function approximation: A gradient boosting machine [J]. Annals of Statistics, 2001: 1189-1232.
[9] Quinlan J R. Induction of decision trees [J]. Machine Learning, 1986, 1: 81-106.
[10] Ke G, Meng Q, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree [J]. Advances in Neural Information Processing Systems, 2017, 30.
[11] Liang J, Gan Y, Song W, et al. ThermalElectrochemical simulation of electrochemical characteristics and temperature difference for a battery module under twostage fast charging [J]. Journal of Energy Storage, 2020, 29: 101307.
[12] Li X, Zhang L, Wang Z, et al. Remaining useful life prediction for lithiumion batteries based on a hybrid model combining the long shortterm memory and Elman neural networks [J]. Journal of Energy Storage, 2019, 21: 510-518.
[13] 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(S1): 86-92.
Li Yaru, Zhang Yulai, Wang Jiachen. Survey on Bayesian optimization methods for hyperparameter tuning [J]. Computer Science, 2022, 49(S1): 86-92.
[14] Mockus J B, Mockus L J. Bayesian approach to global optimization and application to multiobjective and constrained problems [J]. Journal of Optimization Theory and Applications, 1991, 70: 157-172.
[15] 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090.
Cui Jiaxu, Yang Bo. Survey on Bayesian optimization methodology and applications [J]. Journal of Software, 2018, 29(10): 3068-3090.
|