[1] 钱前, 曾大力. 水稻籼粳交 DH 群体苗期的耐冷性QTLs分析[J]. 科学通报, 1999, 44(22): 2402-2407. QIAN Q, ZENG D L. Analysis on QTLs of cold resistance of DH populations of hybrids of japonica and indica rice in seedling stage[J]. Chinese Science Bulletin, 1999, 44(22): 2402-2407.(in Chinese) [2] 陈大洲, 钟平安. 利用 SSR 标记定位东乡野生稻苗期耐冷性基因[J]. 江西农业大学学报, 2002, 24(6): 753-756. CHEN D Z, ZHONG P A. Identification of QTLs for cold tolerance at seedling stage in Dongxiang wild rice(Oryza rufipogon Griff.) by SSR markers[J]. Acta Agriculturae Universitatis Jiangxiensis(Natural Sciences Edition), 2002, 24(6): 753-756. (in Chinese with English abstract) [3] 詹庆才. 水稻苗期耐冷性QTLs的分子定位[J]. 湖南农业大学学报(自然科学版), 2003, 29(1): 7-11. ZHAN Q C. Molecular mapping of QTLs for seedling cold tolerance in rice[J].Journal of Hunan Agricultural University(Natural Sciences), 2003, 29(1): 7-11. (in Chinese with English abstract) [4] 刘之熙, 刘伟, 肖子发, 等. 水稻苗期耐冷性 QTLs 的定位[J]. 杂交水稻, 2010,25(5): 59-63. LIU Z X, LIU W, XIAO Z F, et al. Mapping of QTLs associated with tolerance to chilling injury in rice[J].Hybrid Rice, 2010,25(5): 59-63. (in Chinese with English abstract) [5] 郑加兴, 马增凤, 宋建东, 等. 普通野生稻苗期耐冷性QTL的鉴定与分子定位[J]. 中国水稻科学, 2011, 25(1): 52-58. ZHENG J X, MA Z F, SONG J D, et al. Identification and mapping of QTLs for cold tolerance at the seedling stage in common wild rice(Oryza rufipogon) [J]. Chinese Journal of Rice Science, 2011, 25(1): 52-58. (in Chinese with English abstract) [6] 夏瑞祥, 肖宁, 洪义欢, 等. 东乡野生稻苗期耐冷性的QTL 定位[J]. 中国农业科学, 2010, 43(3): 443-451. XIA R X, XIAO N, HONG Y H, et al. QTLs mapping for cold tolerance at seedling stage in Dongxiang wild rice (Oryza rufipogon Griff.) [J]. Scientia Agricultura Sinica, 2010, 43(3): 443-451. (in Chinese with English abstract) [7] BARRANGOU R. RNA-mediated programmable DNA cleavage [J]. Nature Biotechnology, 2012, 30(9): 836-838. [8] GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J]. Nature, 2010, 468(7320): 67-71. [9] DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ [J]. Nature, 2011, 471(7340): 602-607. [10] 王昕, 张志强, 张智英. TALE 核酸酶介导的基因组定点修饰技术[J]. 中国生物化学与分子生物学报, 2012, 28(3): 211-216. WANG X, ZHANG Z Q, ZHANG Z Y. Genome targeting modification technology based on TALE nuclease engineering[J]. Chinese Journal of Biochemistry and Molecular Biology, 2012, 28(3): 211-216. (in Chinese with English abstract) [11] MAEDER M L, LINDER S J, CASCIO V M, et al. CRISPR RNA-guided activation of endogenous human genes [J]. Nature Methods, 2013, 10(10): 977-979. [12] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121): 823-826. [13] YANG H, WANG H, SHIVALILA C S, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 154(6): 1370-1379. [14] WANG H, YANG H, SHIVALILA C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering [J]. Cell, 2013, 153(4): 910-918. [15] LI W, TENG F, LI T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems [J]. Nature Biotechnology, 2013, 31(8): 684-686. [16] HWANG W Y, FU Y, REYON D, et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system [J]. Plos One, 2013, 8(7): e68708. [17] JAO L E, WENTE S R, CHEN W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34): 13904-13909. [18] DICARLO J E, NORVILLE J E, MALI P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Research, 2013, 41(7): 4336-4343. [19] YU Z, REN M, WANG Z, et al. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila[J]. Genetics, 2013, 195(1): 289-291. [20] BASSETT A R, TIBBIT C, PONTING C P, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system [J]. Cell Reports, 2013, 4(1): 220-228. [21] DICKINSON D J, WARD J D, REINER D J, et al. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination [J]. Nature Methods, 2013, 10(10): 1028-1034. [22] JIANG W, ZHOU H, BI H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice [J]. Nucleic Acids Research, 2013, 41 (20): e188. [23] LI J F, NORVILLE J E, AACH J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nature Biotechnology, 2013, 31(8): 688-691. [24] MIAO J, GUO D, ZHANG J, et al. Targeted mutagenesis in rice using CRISPR-Cas system [J]. Cell Research, 2013, 23(10): 1233-1236. [25] SHEN C X, LI D, HE R H, et al. Comparative transcriptome analysis of RNA-Seq data for cold-tolerant and cold-sensitive rice genotypes under normal and cold stress [J]. Journal of Plant Biology, 2014, 57(6): 337-348. [26] 沈春修, 李丁, 夏玉梅, 等. 东乡野生稻苗期低温诱导表达新基因BGIOSGA013293-DX的过表达载体构建与转化[J]. 杂交水稻, 2015, 30(3): 66-70. SHEN C X, LI D, XIA Y M, et al. Construction of over-expression vector of BGIOSGA013293-DX,a novel gene of cold inducible expression,in Dongxiang wild rice and its genetic transformation into rice[J]. Hybrid Rice, 2015, 30(3): 66-70. (in Chinese with English abstract) [27] 牟少亮, 蔡金森, 严雁, 等. 水稻Pi-ta启动子的克隆及其功能分析[J]. 核农学报, 2013,27(12): 1803-1808. MU S L, CAI J S, YAN Y, et al. Cloning of Pi-ta promoter and its function analysis in rice[J]. Journal of Nuclear Agricultural Sciences, 2013,27(12): 1803-1808. (in Chinese with English abstract) [28] 王北艳, 殷奎德. 转rd29A-ICE1冷诱导基因水稻提高抗寒性研究[J]. 核农学报, 2013,27(6): 731-735. WANG B Y, YIN K D. Integratting cold regulative gene rd29A-ICE1 into rice improves cold tolerance[J]. Journal of Nuclear Agricultural Sciences, 2013,27(6): 731-735. (in Chinese with English abstract) [29] TOKI S, NAHO H, KAZUKO O. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice [J]. The Plant Journal, 2006, 47(6): 969-976. [30] 李丁. 以潮霉素为筛选标记的水稻叶绿体转化体系的建立[D]. 长沙:中南大学, 2013. LI D. Establishment of the chloroplast genetic transformation system in rice by using hygromycin B as selection pressure[D]. Changsha: Zhongnan University, 2013. (in Chinese with English abstract) [31] RYAN D E, LEVIN W. Purification and characterization of hepatic microsomal cytochrome P450 [J]. Pharmacology & Therapeutics, 1990, 45(2): 153-239. [32] 李慧, 丛郁, 常有宏, 等. 杜梨胆碱单加氧酶基因克隆及胁迫表达[J]. 西北植物学报, 2012, 32(6):1093-1098. LI H, CONG Y, CHANG Y H, et al. Cloning and expression analysis of a choline monooxygenase gene in Pyrus betulaefolia Bunge under abiotic stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6):1093-1098. (in Chinese with English abstract) [33] 尹录录. 冷胁迫诱导青蒿素合成基因表达及其钙依赖信号转导相关性研究[D]. 广州:广州中医药大学, 2008. YIN L L. Chilling stress-induced overexpression of artemisinin biosynthetic genes and mechanism of Ca 2+ -dependent signal transduction[D]. Guangzhou: Guangzhou University of Chinese Medicine,2008. (in Chinese with English abstract) [34] 潘丽娟, 黄骥, 王州飞, 等. 水稻胆碱单加氧酶基因的克隆与表达分析[J]. 分子植物育种, 2007, 5 (1): 8-14. PAN L J, HUANG J, WANG Z F, et al. Molecular cloning and expression of OsCMO encoding a putative choline monooxygenase in rice (Oryza sativa L.) [J].Molecular Plant Breeding, 2007, 5 (1): 8-14. (in Chinese with English abstract) |