[1]
张圣光. 北斗卫星导航系统在农业机械化中的应用与发展前景[J]. 现代农业科技, 2014(4): 184-189.
[2]
宋正根, 彭竟德, 肖璨. 基于毫米波雷达和摄像头的农用车辆障碍物检测[J]. 现代信息科技, 2019, 3(14): 46-48.
[3]
丁幼春, 王书茂, 陈红. 农用车辆作业环境障碍物检测方法[J]. 农业机械学报, 2009, 40(S1): 23-27.
[4]
苟琴, 耿楠, 张志毅. 基于视差图的未知环境下农田障碍物检测方法[J]. 计算机工程与设计, 2013, 34(2): 707-710.
[5]
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks [C]. NIPS. Curran Associates Inc. 2012.
[6]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014.
[7]
Szegedy C, Liu Wei, Jia Y, et al. Going deeper with convolutions [J]. IEEE Computer Society, 2014.
[8]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. IEEE Conference on Computer Vision & Pattern Recognition, 2016, 12(12): 770-778.
[9]
Ren S, He K, Girshick R et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10]
Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector [C]. European Conference on Computer Vision. Springer, Cham, 2016.
[11]
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[12]
李云伍, 徐俊杰, 刘得雄, 等. 基于改进空洞卷积神经网络的丘陵山区田间道路场景识别[J]. 农业工程学报, 2019, 35(7): 150-159.
[13]
刘慧, 张礼帅, 沈跃, 等. 基于改进SSD的果园行人实时检测方法[J]. 农业机械学报, 2019, 50(4): 29-35.
[14]
Tan M, Pang R, Le V Q. EfficientDet: Scalable and efficient object detection [EB/OL]. https://arxiv.org/abs/1191.09070v7, 2020-07-27.
[15]
Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv: 1804.02767, 2018.
[16]
Bochkovskiy A, Wang C Y, Liao H. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv: 2004.10934, 2020-04-23.
|