English

中国农机化学报

中国农机化学报 ›› 2021, Vol. 42 ›› Issue (9): 150-156.DOI: 10.13733/j.jcam.issn.2095-5553.2021.09.21

• 中国农机化学报 • 上一篇    下一篇

边缘设备上的葡萄园田间场景障碍检测

崔学智;冯全;王书志;张建华;   

  1. 甘肃农业大学机电工程学院;西北民族大学机电工程学院;中国农业科学院农业信息研究所;
  • 出版日期:2021-09-15 发布日期:2021-09-15
  • 基金资助:
    中央高校基本科研业务费项目(31920200043)
    国家自然基金面上项目(31971792)

Vineyard scene obstacle detection based on edge devices

Cui Xuezhi, Feng Quan, Wang Shuzhi, Zhang Jianhua.   

  • Online:2021-09-15 Published:2021-09-15

摘要: 为在无人驾驶农机上实现快速、准确的葡萄园田间障碍目标检测,将EfficientDet-D0、YOLOV4-TINY、YOLOV3-TINY、YOLO-FASTEST四种轻量级目标检测神经网络在自建的葡萄园田间场景数据集进行训练,将训练模型移植到边缘设备NVIDIA JETSON TX2(以下简称TX2)上,对这4种模型的障碍检测精度和在TX2上的适用性进行试验评估。试验结果表明,YOLOV3-TINY、YOLOV4-TINY、EfficientDet-D0、YOLO-FASTEST对葡萄园田间场景障碍检测平均精度mAP分别为0.648、0.601、0.598和0.401。在TX2的实测结果显示,上述网络模型实时视频检测帧率分别为34.24帧、24.75帧、2.34帧和2.97帧。4种目标检测网络中,YOLOV3-TINY在数据集上的检测精度最高、实时检测速度最快,但对硬件资源消耗也相对较高。而在考虑硬件资源消耗时,使用YOLOV4-TINY可以在检测精度、实际运行速度和硬件资源消耗之间维持更好的平衡性,同时可以在运行多任务的情况下取得好的效果。

关键词: 田间场景, 轻量级网络模型, 边缘设备, 实时检测, 适用性

Abstract: In order to achieve fast and accurate obstacle detection in vineyard field on unmanned agricultural machinery, four kinds of lightweight target detection neural networks, EfficientDetD0, YOLOV4TINY, YOLOV3TINY, and YOLOFASTEST, were trained with the independently built vineyard field scene dataset,and the training model eretransplanted to the edge device NVIDIA JETSON TX2. The accuracy of obstacle detection and the applicability of the four models on TX2 were evaluated. The results showed that the mAP of YOLOV3TINY, YOLOV4TINY, EfficientDetD0, and YOLOFASTEST were 0.648, 0.601, 0.598, and 0401, respectively. The experimental results on TX2 showed that the realtime video detection frame rates of the above network models were 34.24 frames, 24.75 frames, 2.34 frames, and 2.97 frames, respectively. Among the four target detection networks, YOLOV3TINY has the highest detection accuracy on the dataset and the fastest realtime detection speed, but it also consumes high hardware resources relatively. When considering the hardware resource consumption, YOLOV4TINY can better balance detection accuracy, running speed, and hardware resource consumption and achieve good results when running multiple tasks.

Key words: field scene, lightweight network structure, edge equipment, realtime detection, applicability

中图分类号: