[1]
常倩, 李瑾. 2000年以来中国苹果产业发展趋势分析[J]. 北方园艺, 2021(3): 155-160.
Chang Qian, Li Jin. Development trend of apple industry in China since 2000[J]. Northern Horticulture, 2021(3): 155-160.
[2]
王树桐, 王亚南, 曹克强. 近年我国重要苹果病害发生概况及研究进展[J]. 植物保护, 2018, 44(5): 13-25, 50.
Wang Shutong, Wang Yanan, Cao Keqiang. Occurrence of and research progress in important apple diseases in China in recent years [J]. Plant Protection, 2018, 44(5): 13-25, 50.
[3]
乔社茹. 苹果叶部病害的识别与防治[J]. 山西林业科技, 2020, 49(2): 55-57.
Qiao Sheru. Identification and control of apple leaf diseases [J]. Shanxi Forestry Science and Technology, 2020, 49(2): 55-57.
[4]
魏杨, 毕秀丽, 肖斌. 基于区域卷积神经网络的农业害虫检测方法[J]. 计算机科学, 2018, 45(z2): 226-229, 233.
Wei Yang, Bi Xiuli, Xiao Bin. Agricultural insect pest detection method based on regional convolutional neural network [J]. Computer Science, 2018, 45(z2): 226-229, 233.
[5]
张振华, 陆金桂. 基于改进卷积神经网络的混凝土桥梁裂缝检测[J]. 计算机仿真, 2021, 38(11): 490-494.
Zhang Zhenhua, Lu Jingui. Concrete bridge crack detection based on improved convolution neural network [J]. Computer Simulation, 2021, 38(11): 490-494.
[6]
娄茹珍, 徐丽, 蒋正乾, 等. 基于卷积神经网络的眼疾识别算法[J]. 无线电工程, 2021, 51(11): 1202-1207.
Lou Ruzhen, Xu Li, Jiang Zhengqian, et al. Eye disease recognition algorithm based on convolution neural network [J]. Radio Engineering, 2021, 51(11): 1202-1207.
[7]
傅云龙, 梁丹, 梁冬泰, 等. 基于机器视觉与YOLO算法的马铃薯表面缺陷检测[J]. 机械制造, 2021, 59(8): 82-87.
Fu Yunlong, Liang Dan, Liang Dongtai, et al. Potato surface defect detection based on machine vision and YOLO algorithm [J]. Machinery, 2021, 59(8): 82-87.
[8]
宋中山, 刘越, 郑禄, 等. 基于改进YOLOV3的自然环境下绿色柑橘的识别算法[J]. 中国农机化学报, 2021, 42(11): 159-165.
Song Zhongshan, Liu Yue, Zheng Lu, et al. Identification of green citrus based on improved YOLOV3 in natural environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 159-165.
[9]
Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. arXiv preprint arXiv: 1804.02767, 2018.
[10]
周宏威, 沈恒宇, 袁新佩, 等. 基于迁移学习的苹果树叶片病虫害识别方法研究[J]. 中国农机化学报, 2021, 42(11): 151-158.
Zhou Hongwei, Shen Hengyu, Yuan Xinpei, et al. Research on identification method of apple leaf diseases based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 151-158.
[11]
王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
Wang Yunlu, Wu Jiefang, Lan Peng, et al. Apple disease identification using improved Faster R-CNN [J]. Journal of Forestry Engineering, 2022, 7(1): 153-159.
[12]
伍济钢, 成远, 邵俊, 等. 基于改进YOLOv4算法的PCB缺陷检测研究[J]. 仪器仪表学报, 2021, 42(10): 171-178.
Wu Jigang, Cheng Yuan, Shao Jun, et al. A defect detection method for PCB based on the improved YOLOv4 [J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 171-178.
[13]
Huang G, Liu Z, Van DerMaaten L, et al. Densely connected convolutional networks [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[14]
郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5): 1292-1297.
Guo Yuexiu, Yang Wei, Liu Qi, et al. Survey of residual network [J]. Application Research of Computers, 2020, 37(5): 1292-1297.
[15]
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9): 1904-1916.
[16]
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8759-8768.
[17]
Dubey S R, Singh S K, Chaudhuri B B. A Comprehensive Survey and Performance Analysis of Activation Functions in Deep Learning[J]. arXiv preprint arXiv:2109.14545, 2021.
[18]
杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23): 7-14, 63.
Yang Junchuang, Zhao Chao. Survey on K-Means clustering algorithm [J]. Computer Engineering and Applications, 2019, 55(23): 7-14, 63.
[19]
钱小梅, 刘嘉勇, 程芃森. 基于密集连接卷积神经网络的远程监督关系抽取[J]. 计算机科学, 2020, 47(2): 157-162.
Qian Xiaomei, Liu Jiayong, Cheng Pengsen. Distant supervised relation extraction based on densely connected convolutional networks [J]. Computer Science, 2020, 47(2): 157-162.
|