[1]
Moshashai K, Almasi M, Minaei S, et al. Identification of sugarcane nodes using image processing and machine vision technology [J]. International Journal of Agricultural Research, 2008, 3(5): 357-364.
[2]
陆尚平, 文友先, 葛维, 等. 基于机器视觉的甘蔗茎节特征提取与识别[J]. 农业机械学报, 2010, 41(10): 190-194.
Lu Shangping, Wen Youxian, Ge Wei, et al. Recognition and features extraction of sugarcane nodes based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 190-194.
[3]
黄亦其, 乔曦, 唐书喜, 等. 基于Matlab的甘蔗茎节特征分布定位与试验[J]. 农业机械学报, 2013, 44(10): 93-97, 232.
Huang Yiqi, Qiao Xi, Tang Shuxi, et al. Localization and test of characteristics distribution for sugarcane internode based on Matlab [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 93-97, 232.
[4]
李尚平, 李向辉, 张可, 等. 改进YOLOv3网络提高甘蔗茎节实时动态识别效率[J]. 农业工程学报, 2019, 35(23): 185-191.
Li Shangping, Li Xianghui, Zhang Ke, et al.Increasing the realtime dynamic identification efficiency of sugarcane nodes by improved YOLO v3 network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 185-191.
[5]
Meng Y, Ye C, Yu S, et al. Sugarcane node recognition technology based on wavelet analysis [J]. Computers and Electronics in Agriculture, 2019, 158: 68-78.
[6]
Zhou D, Fan Y, Deng G, et al. A new design of sugarcane seed cutting systems based on machine vision [J]. Computers and Electronics in Agriculture, 2020, 175: 105611.
[7]
Chen J, Wu J, Qiang H, et al. Sugarcane nodes identification algorithm based on sum of local pixel of minimum points of vertical projection function [J]. Computers and Electronics in Agriculture, 2021, 182: 105994.
[8]
刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
Liu Fang, Liu Yukun, Lin Sen, et al. Fast recognition method for tomatoes under complex environments based on improved YOLO [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 229-237.
[9]
Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model [J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
[10]
Wong A, Famuori M, Shafiee M J, et al. YOLO Nano: A highly compact you only look once convolutional neural network for object detection [C]. 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive ComputingNeurIPS Edition (EMC2-NIPS). IEEE, 2019: 22-25.
[11]
Jiang Z, Zhao L, Li S, et al. Realtime object detection method based on improved YOLOv4-tiny [J]. arXiv preprint arXiv, 2011.04244, 2020.
[12]
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv, 2004.10934, 2020.
[13]
Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv, 1704.04861, 2017.
[14]
张宏鸣, 汪润, 董佩杰, 等. 基于DeepSORT算法的肉牛多目标跟踪方法[J]. 农业机械学报, 2021, 52(4): 248-256.
Zhang Hongming, Wang Run, Dong Peijie, et al. Beef cattle multitarget tracking based on DeepSORT algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 248-256.
[15]
高洋, 陈万米, 林城. 基于SSD-MobileNet的投篮机器人目标识别算法[J]. 工业控制计算机, 2021, 34(6): 51-53.
Gao Yang, Chen Wanmi, Lin Cheng. Target recognition algorithm of basketshooting robot based on SSD-MobileNet [J]. Industrial Control Computer, 2021, 34(6): 51-53.
[16]
Sandler M, Howard A, Zhu M, et al. MobileNetv2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[17]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[18]
Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3 [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[19]
Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[20]
Liu Z, Li J, Shen Z, et al. Learning efficient convolutional networks through network slimming [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2736-2744.
[21]
Ma N, Zhang X, Zheng H T, et al. ShuffleNet v2: Practical guidelines for efficient cnn architecture design [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 116-131.
[22]
Tian H, Wang T, Liu Y, et al. Computer vision technology in agricultural automation—A review [J]. Information Processing in Agriculture, 2020, 7(1): 1-19.
[23]
Wu D, Lü S, Jiang M, et al. Using channel pruningbased YOLOv4 deep learning algorithm for the realtime and accurate detection of apple flowers in natural environments [J]. Computers and Electronics in Agriculture, 2020, 178: 105742.
[24]
景亮, 王瑞, 刘慧, 等. 基于双目相机与改进YOLOv3算法的果园行人检测与定位[J]. 农业机械学报, 2020, 51(9): 34-39, 25.
Jing Liang, Wang Rui, Liu Hui, et al. Orchard pedestrian detection and location based on binocular camera and improved YOLOv3 algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 34-39, 25.
[25]
崔博超, 郑江华, 刘忠军, 等. 无人机遥感影像的YOLOv3鼠洞识别技术[J]. 林业科学, 2020, 56(10): 199-208.
Cui Bochao, Zheng Jianghua, Liu Zhongjun, et al. YOLOv3 mouse hole recognition based on remote sensing images from technology for unmanned aerial vehicle [J]. Scientia Silvae Sinicae, 2020, 56(10): 199-208.
[26]
彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162.
Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162.
|