[1] 丁新伦, 张洁, 吴祖建. 草莓上新发现的病毒研究现状与展望[J]. 园艺学报, 2024, 51(7): 1639-1648.
Ding Xinlun, Zhang Jie, Wu Zujian. Recent advances in new viruses infecting strawberry [J]. Acta Horticulturae Sinica, 2024, 51(7): 1639-1648.
[2] 黄宁旺, 蒋琪玮, 王晶如, 等. 设施内不同遮阴处理对草莓生长和光合特性及产量品质的影响[J]. 中国果树, 2024(5): 68-74.
Huang Ningwang, Jiang Qiwei, Wang Jingru, et al. Effects of varying shading treatments under facility conditions on the growth, photosynthetic characteristics, yield and quality of strawberry [J]. China Fruits, 2024(5): 68-74.
[3] 章璞, 乔波, 陈义明. 基于改进YOLOv8的多阶段草莓检测算法[J]. 中国农机化学报, 2024, 45(10): 274-280.
Zhang Pu, Qiao Bo, Chen Yiming. A multistage strawberry detection algorithm based on improved YOLOv8 [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(10): 274-280.
[4] 王瑞彬, 杨世忠, 高升. 融合残差网络与注意力机制的草莓检测[J]. 中国农机化学报, 2024, 45(1): 266-273.
Wang Ruibin, Yang Shizhong, Gao Sheng. Strawberry detection combining residual network with attention mechanism [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 266-273.
[5] 黄铝文, 郑梁, 黄煜, 等. 基于多尺度卷积与通道域增强的草莓病害识别方法[J]. 江苏农业科学, 2023, 51(10): 202-210.
Huang Lüwen, Zheng Liang, Huang Yu, et al. Strawberry disease recognition method based on multiscale convolution and channel domain enhancement [J]. Jiangsu Agricultural Sciences, 2023, 51(10): 202-210.
[6] Targ S, Almeida D, Lyman K. Resnet in resnet: Generalizing residual architectures [J]. arXiv preprint arXiv: 1603.08029, 2016.
[7] 胡晓波, 许桃胜, 黄伟, 等. 交互式双分支特征融合的草莓病害程度快速诊断方法[J]. 农业机械学报, 2023, 54(11): 225-235.
Hu Xiaobo, Xu Taosheng, Huang Wei, et al. Interactive bilateral feature fusion network for realtime strawberry disease diagnosis [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 225-235.
[8] 乔珠峰, 赵秋菊, 郭建鑫, 等. 基于改进YOLOv5的草莓病害智能识别终端设计[J]. 中国农机化学报, 2024, 45(3): 205-211.
Qiao Zhufeng, Zhao Qiujiu, Guo Jianxin, et al. Design of strawberry disease intelligent identification terminal based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(3): 205-211.
[9] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[10] 亢洁, 刘佳, 刘文波, 等. 基于多感受野与多尺度融合的草莓病害分割算法[J]. 江苏农业科学, 2024, 52(4): 206-215.
Kang Jie, Liu Jia, Liu Wenbo. Study on strawberry disease segmentation algorithm based on multi receptive field and multiscale fusion module [J]. Jiangsu Agricultural Sciences, 2024, 52(4): 206-215.
[11] Siddique N, Paheding S, Elkin C P, et al. U-Net and its variants for medical image segmentation: A review of theory and applications [J]. IEEE Access, 2021, 9: 82031-82057.
[12] 邱畅, 田光兆, 赵嘉威, 等. 基于改进YOLOv5的草莓病害识别[J]. 中国农机化学报, 2024, 45(3): 198-204.
Qiu Chang, Tian Guangzhao, Zhao Jiawei, et al. Strawberry disease identification based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(3): 198-204.
[13] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[14] Yang Z, Wang X, Li J. EIoU: An improved vehicle detection algorithm based on vehiclenet neural network [C]. Journal of Physics: Conference Series. IOP Publishing, 2021, 1924(1): 012001.
[15] Ahmed M, Seraj R, Islam S M S. The kmeans algorithm: A comprehensive survey and performance evaluation [J]. Electronics, 2020, 9(8): 1295.
[16] Xu S, Zheng S C, Xu W, et al. HCF-Net: Hierarchical context fusion network for infrared small object detection [J]. arXiv preprint arXiv:240310778, 2024.
[17] Wang C Y, Yeh I H, Liao H Y M. YOLOv9: Learning what you want to learn using programmable gradient information [J]. arXiv preprint arXiv:240213616, 2024.
[18] Feng C, Zhong Y, Gao Y, et al. Tood: Taskaligned onestage object detection [C]. 2021 IEEE/CVF International Conference on Computer Vision. IEEE Computer Society, 2021: 3490-3499.
[19] Zhu X, Hu H, Lin S, et al. Deformable convnets v2: More deformable, better results [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[20] Li C, Li L, Jiang H, et al. YOLOv6: A singlestage object detection framework for industrial applications [J].arXiv preprint arXiv: 2209.02976, 2022.
[21] Woo S, Debnath S, Hu R, et al. Convnext v2: Codesigning and scaling convnets with masked autoencoders [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 16133-16142.
[22] Qin D, Leichner C, Delakis M, et al. Mobilenetv4-universal models for the mobile ecosystem [J]. arXiv preprint arXiv: 2404.10518, 2024.
[23] Ding X, Zhang Y, Ge Y, et al. UniRepLKNet: A universal perception largekernel convnet for audio video point cloud timeseries and image recognition [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 5513-5524.
[24] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[25] Dai X, Chen Y, Xiao B, et al. Dynamic head: Unifying object detection heads with attentions [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.
|